Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Cu(I) complexes of bis(methyl)(thia/selena) salen ligands: Synthesis, characterization, redox behavior and DNA binding studies

Ashish K. Asatkar^{a,*}, Mamta Tripathi^b, Snigdha Panda^a, Rama Pande^b, Sanjio S. Zade^a

^a Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741252 Nadia, WB, India
^b School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India

ARTICLE INFO

Article history: Received 25 April 2016 Accepted 16 July 2016 Available online 18 July 2016

Keywords: Thia/selena-salen Cu(I) complexes Cyclic voltammetry DNA binding

ABSTRACT

Mononuclear cuprous complexes **1** and **2**, [{CH₃E(o-C₆H₄)CH = NCH₂]₂Cu]ClO₄; E = S/Se, have been synthesized by the reaction of bis(methyl)(thia/selena) salen ligands and [Cu(CH₃CN)₄]ClO₄. Both the products were characterized by elemental analysis, ESI-MS, FT-IR, ¹H/¹³C/⁷⁷Se NMR, and cyclic voltammetry. The complexes possess tetrahedral geometry around metal center with the N₂S₂/N₂Se₂ coordination core. Cyclic voltammograms of complexes **1** and **2** displayed reversible anodic waves at $E_{1/2} = +0.08$ V and +0.10 V, respectively, corresponding to the Cu(1)/Cu(11) redox couple. DNA binding studies of both the complexes were performed applying absorbance, fluorescence and molecular docking techniques. Competitive binding experiment of complexes with ct-DNA against ethidium bromide is performed to predict the mode of binding. The results indicate the groove binding mode of complexes **1** and **2** to DNA. The binding constants revealed the strong binding affinity of complexes towards ct-DNA.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Salen/salphen ligand systems (derived from the Schiff-base coupling of salicylidehyde and ethylendiamine/o-phenylenediamine) are one of the most popular ligand systems in inorganic chemistry. It offers the potential tetradentate (N_2O_2) chelating system and hence, wide variety of metal ions have been engaged with such system. Salen based metal complexes have been explored extensively due to their versatile applications such as in catalysis [1], luminescence [2], magnetism [3], biological studies [4] and material science [5]. Metal salen systems have recently been used for the development of metal-organic frameworks for heterogeneous catalysis, gas storage and molecular trapping [6]. Although, salen systems are widely studied ligands, their sulphur and selenium analogues (thia-salen and selena-salen) are not much explored so far, mainly due to the synthetic complications including instability of thiol and selenol groups compared to the hydroxy group of salen.

On the other hand, with the establishment of structure of double stranded DNA and mechanism of its interaction with *cis*-platin, the study of DNA-metal complex interaction has been a target of chemists in the search of anticancer drugs [7]. DNA-metal interaction studies have recently been explored as different ways *viz* DNA-metal base pairs, template-directed modified DNA-metal complex and non-covalent interaction of DNA-metal complex [8]. The non-covalent interaction of DNA with metal complex can lead to groove binding,

* Corresponding author. *E-mail address:* ashu.asatkar@gmail.com (A.K. Asatkar). intercalation or DNA cleavage. Covalently modified metallosalen-DNA which provide site-specific binding have been explored recently for higher order nanostructures [9].

Template-directed assembly of metallosalen-DNA conjugates has attracted great attention in past few years [10]. Carell and coworkers strategically synthesized metallosalen-DNA hairpin conjugate, using three components (salicylaldehyde, diamine and metal ion), inside a DNA duplex which resulted in tremendous stabilization of the duplex structure [11]. Brissos et al. reported the luminescent zinc salphen complexes as potential DNA-intercalator agents and demonstrated their utility as bio-markers for cell imaging [12]. Xie et al. also reported the library of Zn-Salen/Salphen complexes as fluorescent probes for live cell imaging [13]. Recently, Su et al. reported the interstrand crosslinking of metal ion coordinating pyrazole and salen ligandosides resulting in stable multi-copper ion complexing DNA double helix structures [14]. DNA binding property of substituted Zn-salphen complexes was recently studied by Giannicchi et al. [15]. They found that the presence of strong electron-withdrawing nitro substituent increased the electrophilic character of the metal center and thus responsible for the strongest interaction with plasmid DNA.

Thus, the DNA binding study of alkylated (thia/selena)salen-Cu(I) complexes (as electrophilic complex cations) could be worth. Moreover, many metallo-proteins/metallo-enzymes such as hemocyanin, cupredoxins, tyrosinase and nitritereductase, playing crucial role in biochemistry, have Cu(I) center as their active site [16]. N₂S₂Cu(I) coordination core, derived from (S)-cysteine, (S)-methionine and two (N)-histidine, is of particular importance as active site in blue copper protein (type-I) [17].•We have been interested in developing the metallo-salen/ salphen derivatives and exploring their properties [18]. Here, we are reporting the Cu(I) complexes of ligands L^a and L^b (Scheme 1), their electrochemistry and DNA binding studies are investigated and reported. Cu(I) ion, being the soft acid, has strong affinity towards heavier chalcogen atoms.

2. Experimental

2.1. Synthesis

Ligand **L**^a and **L**^b were prepared according to the literature [19]. Synthesis of complexes is mentioned below:

1: 99.5 mg of $[Cu(CH_3CN)_4]ClO_4$ (0.304 mmol) and 100 mg of ligand L^a (0.304 mmol) were refluxed in 5 mL of dry methanol for 3 h under inert atmosphere. Yellow precipitate appeared immediately during the reaction. The precipitate was filtered, washed thoroughly with methanol and dried in vacuum.

Caution: Perchlorate salts are potentially explosive and care should be taken in handling them.

Yield: 130 mg (87%). M. p.: 206 °C. Anal. calc. for $C_{18}H_{20}N_2S_2CuClO_4$: C, 43.99; H, 4.10; N, 5.70. Found: C, 43.64; H, 4.26; N, 5.51%. ESI-MS: Calc. for $C_{18}H_{20}N_2S_2Cu$: m/z 391.0364. Found 391.2753. IR (cm⁻¹, KBr): 1630(s), 1586(m), 1462(w), 1432(m), 1287(w), 1086(s), 1020(m), 971(m), 776(s), 765(s), 623(s), 468(w). ¹H NMR (δ , ppm, DMSO- d_6): 8.77 (s, 2H); 7.74 (d, J = 7.00 Hz, 2H); 7.50 (m, 4H); 7.32 (d, J = 6.50 Hz, 2H); 3.89 (s, 4H), 2.52 (s, 6H). ¹³C NMR (δ , ppm, DMSO- d_6): 162.48, 136.94, 132.42, 131.90, 129.54, 128.02, 125.82, 60.79, 17.21.

2: Complex **2** was prepared in similar way to complex **1**, using 128 mg (0.304 mmol) of Ligand L^b

Yield: 105 mg (76%). M. p.: 190 °C (dec.). Anal. calc. for $C_{18}H_{20}N_2Se_2CuClO_4$: C, 36.94; H, 3.44; N, 4.79. Found: C, 36.39; H, 3.61; N, 4.57%. ESI-MS: Calc. for $C_{18}H_{20}N_2Se_2Cu$: *m/z* 486.9253. Found 487.0814. IR (cm⁻¹, KBr): 1654(m), 1626(m), 1583(w), 1461(w), 1421(m), 1386(w), 1336(w), 1286(w), 1271(w), 1216(w), 1083(s), 1030(m), 964(m), 929(w), 9119(w), 765(s), 622(m), 463(w). ¹H NMR (δ , ppm, DMSO-*d*₆): 8.69 (s, 2H); 7.70 (d, *J* = 7.50 Hz, 2H); 7.60 (d, *J* = 7.50 Hz, 2H); 7.45 (t, *J* = 7.50 Hz, 2H); 7.39 (t, *J* = 7.50 Hz, 2H); 3.99 (s, 4H), 2.32 (s, 6H). ¹³C NMR (δ , ppm, DMSO-*d*₆): 164.04, 133.95, 132.34, 132.03, 131.77, 129.37, 127.60, 61.28, 11.27. ⁷⁷Se NMR (δ , ppm, DMSO-*d*₆): 257.

2.2. Materials and physical measurements

All chemicals and solvents were received from Aldrich/Merck of reagent grade and used as such. NMR spectra were recorded on a Bruker AVANCE 500 FT-NMR spectrometer using DMSO- d_6 as solvent and chemical shift values are reported in ppm (δ scale) relative to Me₄Si either as internal standard or with respect to solvent residual peak. Infrared spectra were measured on KBr disk with a Perkin-Elmer spectrophotometer. The mass spectra were recorded on a WATERS micromass Q-Tof microTM instrument. Elemental analyses were carried out on a Carlo-Erba model 1106 elemental analyzer. Cyclic voltammetry was performed with a computer-controlled Princeton Applied Research 263 A electrochemical workstation using platinum (Pt) disk as a working electrode, Pt-wire as the counter electrode and Ag/AgNO₃ (10 mM in acetonitrile) as the reference electrode. Tetrabutylammonium perchlorate (0.1 M in acetonitrile) was used as supporting electrolyte.

2.3. Computational details

Density functional theory (DFT) calculations were performed using the Gaussian 09 [20] program at the B3LYP/6-31G(d) level [21]. Counter anion is eliminated and the mono positive complex cations are used for the calculations.

2.4. DNA binding study

2.4.1. Absorption method

The absorbance spectra were scanned by keeping the concentration of the complex constant (10^{-4} M) and varying the concentration of DNA $(8.11 \times 10^{-6} \text{ to } 4.86 \times 10^{-5} \text{ M})$, after each successive addition of ct-DNA, followed by 10 min of incubation, in Tris buffer. The intrinsic binding constant, $K_{\rm b}$ of complex with ct-DNA is determined according to the Eq. (1) [22],

$$[\mathbf{DNA}]/(\boldsymbol{\varepsilon}_{\mathbf{a}} - \boldsymbol{\varepsilon}_{\mathbf{f}}) = [\mathbf{DNA}]/(\boldsymbol{\varepsilon}_{\mathbf{b}} - \boldsymbol{\varepsilon}_{\mathbf{f}}) + 1/K_b(\boldsymbol{\varepsilon}_{\mathbf{b}} - \boldsymbol{\varepsilon}_{\mathbf{f}})$$
(1)

Where, [DNA] is the concentration of ct-DNA, $\varepsilon_{\rm f}$, $\varepsilon_{\rm a}$ and $\varepsilon_{\rm b}$ correspond to the extinction coefficients, for the DNA free metal complex, apparent metal complex (for each addition of ct-DNA to the complex) and fully bound metal complex, respectively. In plots of [DNA] / ($\varepsilon_{\rm a} - \varepsilon_{\rm f}$) versus [DNA], K_b is given by the ratio of the slope to intercept. % hyperchromicity is calculated using the formula, % hyperchromicity = (A_{free} - A_{bound}) / A_{free}, where A denotes absorbance.

2.4.2. Fluorescence method

Fluorescence emission study is carried out by keeping concentration of metal complex constant and varying the concentration of ct-DNA. Fluorescence intensities were recorded after every successive addition of DNA solution, followed by 10 min of incubation. The values obtained were calculated following the Eq. (2),

$$\log(|F_0 - F|/F) = \log K_f + n \log[DNA]$$
⁽²⁾

Where, F_0 and F are the fluorescence intensities of the fluorophore in the absence and presence of different concentrations of ct-DNA and n is the number of binding sites. The linear relationship is obtained for $log(F - F_0) / F$ versus log [DNA]. The values of K_f clearly underscore the affinity of complexes for DNA [23].

In fluorescence competitive binding studies, DNA was pre-treated with EB for 30 min. Fluorescence experiments were conducted by adding the complex solution to the samples containing 10 μ M EB and 100 μ M ct-DNA and the effect on the emission intensity was measured. The results were analyzed through Stern-Volmer Eq. (3) [24].

$$\mathbf{F}_0/\mathbf{F} = \mathbf{F} + K_{sv}[\mathbf{Q}]$$
(3)

Scheme 1. Synthesis of complexes 1 and 2.

Scheme 2. Fragmentation of complexes 1 and 2 in mass spectrometer.

Where, F_0 and F are the fluorescence intensities of the fluorophore in the absence and presence of different concentrations of ct-DNA and K_{sv} is a linear Stern-Volmer constant. The linear relationship is obtained for F_0/F versus [DNA].

2.4.3. Molecular docking

Molecular docking procedure plays a key role in knowing the mode of drug-DNA interaction for rational drug design and the technique has proved to be very effective in understanding the mechanism of binding of small molecule to DNA. In this method, receptor structure is downloaded in PDB format. In these cases ct-DNA is treated as receptor moiety and they are downloaded from www.rsc.org protein data bank and ligand structures (complex **1** and **2**) are drawn with the help of tools provided in software. Then, both the moieties were selected and docking was performed. The docking process via HEX 8.0 docking software is performed for grid Dimension of 0.6 Å, Receptor range and Ligand range of 180, Twist range of 360 and Distance range of 40 Å [25].

3. Results and discussion

3.1. Characterization of complexes

Reaction of $[Cu(CH_3CN)_4]ClO_4$ and bis(methyl)(thia/selena) salen ligands, L^a and L^b, in 1:1 M ratio gave the complexes 1 and 2, respectively, in high yields. Elemental analyses of both the complexes are consistent with the proposed structures. ESI mass spectrum of the complex 1 showed base peak at m/z 391.2753 corresponding to the $[L^aCu]^+$ and that of complex 2 showed base peak at m/z 487.0814 corresponding to the $[L^bCu]^+$. Both the complexes underwent demethylation successively in mass spectra (Scheme 2). The di-demethylated product of $[L^bCu]^+$ is more in abundance (11%) compare to that of $[L^aCu]^+$ (2%) which can be explained on the basis of weaker Se—CH₃ bond than the S—CH₃ bond.

In the IR spectra of complexes **1** and **2**, C==N stretching frequencies were observed at 1630 and 1654 cm⁻¹, respectively. The strong and broad band at around 1085 cm⁻¹ and sharp band at around 622 cm⁻¹ in the IR spectra are indicative of free perchlorate ion and the absence of band in the region 930 cm⁻¹ further eliminate the possibility of its involvement in coordination.

Multinuclear NMR spectra of both the complexes showed their symmetric nature. Singlets at 8.77 and 8.69 ppm in the ¹H NMR spectra of the complexes **1** and **2**, respectively, are assigned to imine proton, though their significant shifting to lower field with respect to the signals of free ligands (8.62 ppm (L^a) and 8.54 ppm (L^b), DMSO- d_6), suggests the coordination of nitrogen atoms with metal ion. The methyl groups appeared at 2.52 ppm (**1**) and 2.32 ppm (**2**), however their downfield shifting compare to the free ligands [2.40 ppm (L^a) and 2.10 ppm (L^b) in DMSO- d_6], indicates the involvement of sulphur and selenium atoms in coordination with metal ion. ¹³C NMR is consistent with proposed structure. ⁷⁷Se NMR spectrum of the complex **2** showed single resonance at 257 ppm in the form of quartet due to coupling with methyl protons. The signal is shifted to 8 ppm downfield compare to the parent ligand in same solvent.

3.2. Optimized structures

All attempts to grow the single crystals of the complexes suitable for X-ray crystallography were unsuccessful. DFT calculations were performed to get the optimized structures of complexes **1** and **2**. The optimized geometries (Fig. 1) for both the complexes feature the distorted tetrahedral geometry around metal center, as expected for the d¹⁰ system. The calculated Cu—N and Cu—S bond lengths in complex **1** were found to be 1.957 and 2.287 Å, respectively, while those in complex **2** are 1.988 and 2.315 Å, respectively. The Cu—N bonds are longer in complex **2** than those in complex **1**. The calculated Cu—S and Cu—Se bond lengths are in the range of those in tetrahedral Cu(I) thio/seleno-ether complexes [26]. Selected bond lengths and bond angles are listed in Table 1.

3.3. Electrochemical study

The electrochemical responses of the Cu(I) complexes were studied by cyclic voltammetry at a Pt electrode in acetonitrile solution under inert atmosphere. The cyclic voltammograms of copper complexes **1** and **2**, were recorded in the potential range of -1.5 to +1.5 V versus Ag/AgNO₃ at 50–200 mV/s scan rates. Fig. 2 shows their voltammograms at scan rate 50 mV/s. Cyclic voltammogram of complex **1** showed the reversible anodic wave at $E_{1/2} = +0.08$ V corresponding to the Cu(I)/Cu(II) redox couple. In the redox waves, anodic to cathodic peak current ratio (i_a/i_c) and peak separation (ΔE_p) between the anodic and cathodic peaks were independent to scan rate, indicating the reversibility of Cu(I)/Cu(II) pair. The two anodic peaks at +1.24 and +1.46 V and the

Fig. 1. Optimized geometries of mono-positive Cu(I) complex cations 1 (a) and 2 (b).

Table	-1
Tanie	
INNIC	

Selected bond lengths	(Å)	and bond	angles (°)	by t	heoretical	calcu	lations f	or comp	lexes	1 and	2.
-----------------------	-----	----------	------------	------	------------	-------	-----------	---------	-------	-------	----

Bond lengt	hs (Å)	1	2	Bond angles (°	°)		1	2
Cu	N1	1.957	1.989	N1	Cu	N2	87.6	86.4
Cu	N2	1.957	1.989	N1	Cu	S1/Se1	97.4	96.7
Cu	S1/Se1	2.287	2.315	N2	Cu	S2/Se2	97.4	96.7
Cu	S2/Se2	2.287	2.315	S1/Se1	Cu	S2/Se2	106.4	115.7
				N1	Cu	S2/Se2	137.3	131.2
				N2	Cu	S1/Se1	137.3	131.2

respective reduction at +0.42 V can be assigned to either ligand based redox process or further oxidation of metal centre [27]. The oxidative peak at +1.24 V and the corresponding reduction peak at +0.42 V, became more intense with the increase of scan rates. The cathodic wave consists of an irreversible reductive peak at -0.93 V which is attributed to Cu(I)/Cu(0) reduction and an oxidative peak at -0.18 V.

The cyclic voltammogram of complex **2** displayed the nature similar to **1**, except the quasi-reversibility of Cu(I)/Cu(0) redox couple at $E_{1/2} = -0.77$ V. The Cu(I)/Cu(II) redox couple for complex **2** was observed at $E_{1/2} = +0.10$ V. The reversibility of Cu(I)/Cu(II) pair in both the complexes may result from the stabilization of Cu(I) ion by sulphur/selenium donors through soft-soft bonding. The preferential stabilization of Cu(I) ions by the selenium donor ligand in complex **2** over sulphur analogue **1** is also indicated by the for higher $E_{1/2}$ value for **2** than **1** as well as the quasi-reversibility of Cu(I)/Cu(0) process in **2**. The low potentials for the Cu(I)/Cu(II) redox couples suggest the complexes as good candidates for catalyst in electron transfer (redox) reactions.

3.4. DNA binding

Spectrophotometric absorption technique is one of the most established methods to analyze the interaction of drug/molecule with DNA, qualitatively and quantitative both, and to predict the mode of interaction. Absorption spectra of the complexes **1** and **2** in absence and presence of ct-DNA are shown in Fig. 3. In the electronic spectra of complexes, the intense absorption bands between 240 and 360 nm are attributed to intraligand $\pi \rightarrow \pi^*$ transitions. In absorption spectral titration of the complexes with ct-DNA, a significant hyperchromic effect was observed at around 265 nm. Addition of increasing amount of DNA (0–4.86 × 10⁻⁵ M) to the complexes **1** and **2**, exhibited hyperchromism of around 243% and 92%, respectively. This significant hyperchromic shift clearly indicates the non-bonding interaction of complexes with ct-DNA. This interaction can lead to either partial uncoiling of the helical structure of DNA induced by metal complex

followed by embedding of complex to the exposed site resulting in intercalation, or hydrogen bonds and van der Waals interactions including partial exterior insertion of the planar aromatic chromophore to the stacking base pair of helix resulting in minor or major groove binding [28]. Nonetheless, the intercalation of complexes to DNA leads to the hypochromic shift as well as red shift and thus the observed spectral features ruled out the possibility of intercalation and suggest the groove binding [29]. Bailly et al. reported a functionalized salen-copper(II) complex which binds with DNA via major groove [30]. Rodriguez et al. reported the DNA binding properties of salphen-zinc(II) complexes in series of papers, as intercalator [31].

The quantitative binding from absorption method is analyzed with the help of Eq. (1). DNA binding constants K_b calculated for complexes **1** and **2** are 1.36×10^4 and 1.00×10^4 M⁻¹, respectively. The binding constants are comparable to reported copper(II) complex groove binders [32]. The intrinsic binding constants indicate the little higher affinity of complex **1** to DNA. The mode of binding was further analyzed by fluorescence technique.

Fluorescence technique is also used to monitor the possible binding mode of complexes to DNA. Emission spectra of the complexes were obtained with a maxima appearing at around 325 nm when excited at 265 nm. Fluorescence titrations of complexes 1 and 2 with DNA resulted in appreciable increase in emission (Fig. 4). With each addition of ct-DNA aliquot, consistency in shape and emission wavelength in the spectra suggest the strong binding of complexes with DNA. The spectral data indicates the electrostatic force as well as groove binding between nucleic acid and complex. This inference is further proved by competitive binding study. The values of binding constants for emission method, calculated from Eq. (2), are found to be 1.51×10^4 and 1.35×10^4 , respectively, and the values of number of binding sites are very close to 1 [n = 1.019 (1) and 1.003 (2)] which suggest the single binding site between the ct-DNA and complex. The intrinsic binding constants calculated by emission methods are in agreement to the reported groove binders [33]. The slightly higher binding affinity of complex 1 towards

Fig. 2. Cyclic voltammograms of complex 1 (a) and 2 (b) at scan rate 50 mV/s. Dotted lines show the cyclic voltammograms in selected region to visualize the Cu(1)/Cu(11) redox couple.

Fig. 3. Absorption spectra of 1 (a) and 2 (b) in the presence of increasing amounts of CT-DNA. Inset: plots of $[DNA]/(\epsilon_a - \epsilon_f)$ vs. [DNA] for titration of DNA with complexes.

ct-DNA is revealed by both absorbance and emission techniques which is credited to higher coordinating behavior of sulphur than selenium, being stronger Lewis base.

In order to determine the mode of binding, ethidium bromide (EB) is taken as classical intercalator. Ethidium bromide is a fluorescent probe and binds as intercalator with ct-DNA with the enhanced fluorescence [34]. When any other compound is added to EB-DNA adduct, change in emission intensity is observed if it interacts with DNA. DNA pretreated with EB in Tris-HCl buffer was when excited with 510 nm, emission maxima at around 609 nm was observed. When complex molecules $(1.25 \times 10^{-5} \text{ M to } 7.50 \times 10^{-5} \text{ M})$ were added to this solution under identical conditions, increase in emission intensity was observed. This feature ruled out the possibility of intercalation which results in the decrease in fluorescence intensity due to the breakdown of EB-DNA adduct as a replacement of EB by complex molecules [35]. Also, the significant increase in fluorescence suggests that the mode of binding of the complexes involves major groove binding to the DNA helix. The fluorescence spectra of EB bound to DNA in the absence and presence of the complexes are shown in Fig. 5. The emission plots obey a linear Stern-Volmer equation with K_{sv} value of 9.45×10^3 and 9.29×10^3 for complexes 1 and 2, respectively.

3.5. Molecular docking

Molecular docking is a very important tool in drug designing to predict the mode of action of drug on nucleic acid/protein as well as the other parameters e.g. binding site, binding energy and orientation of drug molecule. In order to determine the binding mode of the complexes **1** and **2** with DNA, molecular docking calculations were performed. Binding sites were obtained by performing the blind docking on the DNA duplex. Optimized geometries of the complexes were used for docking. The docked structures also witnessed the binding of complex molecules to the major groove of double stranded DNA by partial uncoiling. Probably, steric clashes between the backbone atoms of DNA strand and the large Cu(I), S/Se atoms of complex molecule is responsible for major groove [36]. Most favorable docked conformation showing major groove binding is shown in Fig. 6(a). The molecular docking results revealed that the DNA-complex interaction is dominated by hydrophobic forces. The hydrophobic contacts between DNA and complex **1** include DC15: C2, C3, DC11: C26, C29 and DG16: H16 interactions (Fig. 6b) while those in complex **2** includes DC15: C2, C3 and DC11: C29. Electrostatic interactions are also assumed to be accountable for the strong DNA-complex interactions due to cationic complexes.

4. Conclusion

The synthesis, characterization and redox properties of the new Cu(I) complexes, 1 and 2, of thia- and selena-ether based Schiff base ligands have been described. In both the complexes, ligands coordinate in tetradentate fashion to give the distorted tetrahedral geometry around metal centers. Cyclic voltammetry of the complexes 1 and 2 revealed that Cu(I)/Cu(II) redox couple occurs at very low potentials ($E_{1/2} =$ +0.08 V and +0.10 V vs Ag/Ag⁺) which can make these complexes as efficient catalysts in electron transfer (redox) reactions. The reversibility of Cu(I)/Cu(II) pair in both the complexes may result from the stabilization of soft Cu(I) ion by soft sulphur/selenium donors. Indication of the stabilization of the Cu(I) ion by sulphur/selenium donors is also received by the preferential stabilization of Cu(I) ions by the selenium donor ligand in complex 2 over sulphur analogue 1 as well as the quasi-reversibility of Cu(I)/Cu(0) process in 2. DNA binding experiments using absorption spectroscopy exhibit the hyperchromic shift with intrinsic binding constants of the order 10^4 M^{-1} . Fluorescence

Fig. 5. Emission spectra of EB bound to DNA in the presence of increasing amount of complexes 1 (a) and 2 (b). Inset: Stern–Volmer plots (Fo/F vs. [1/2]) of fluorescence titration.

Fig. 6. (a) Docked conformation of the complex 1 with the major groove side of DNA and (b) two-dimensional view of DNA-complex interactions.

measurements also established the complex-DNA interaction. Competitive binding experiments of complexes with ct-DNA against ethidium bromide explored the major groove binding mode of complexes with the ct-DNA. Complex-DNA interaction through major groove of DNA via hydrophobic forces is also revealed by molecular docking. Thus, both the complexes demonstrated potential DNA binding capacity and they can be studied furthermore to ensure their possible application as groove binder drugs.

Acknowledgement

RP is thankful to UGC for providing One Time Grant (F.19-127/2014(BSR)) and DST for awarding Inspire Fellowship to MT (DST/IN-SPIRE Fellowship/2013/635).

Appendix A. Supplementary data

Electronic supplementary information (ESI) available: multinuclear NMR spectra, ESI-MS spectra and IR spectra. Supplementary data associated with this article can be found in the online version, at doi:http://dx.doi.org/10.1016/j.saa.2016.07.029.

References

- (a) K.C. Gupta, A.K. Sutar, Coord. Chem. Rev. 252 (2008) 1420–1450;
 (b) C. Baleizao, H. Garcia, Chem. Rev. 106 (2006) 3987–4043;
 - (c) D.J. Darensbourg, Chem. Rev. 107 (2007) 2388–2410.
- [2] X. Yanga, R.A. Jones, S. Huang, Coord. Chem. Rev. 273–274 (2014) 63–75.
- [3] (a) S. Demir, I. Jeon, J.R. Long, T.D. Harris, Coord. Chem. Rev. 289-290 (15) (2015) 149–176.
- (b) H. Miyasaka, A. Saitoh, S. Abe, Coord. Chem. Rev. 251 (200) 2622–2664.
 [4] (a) C.T. Lyons, T.D.P. Stack, Coord. Chem. Rev. 257 (2013) 528–540;
 - (b) G.A. Woldemariam, S.S. Mandal, J. Inorg. Biochem. 102 (2008) 740–747;
 - (c) T. Kurahashi, K. Oda, M. Sugimoto, T. Ogura, H. Fujii, Inorg. Chem. 45 (2006) 7709–7721;
 - (d) A. Silvestri, G. Barone, G. Ruisi, M.T.L. Giudice, S. Tumminello, J. Inorg. Biochem. 98 (2004) 589–594.
- [5] (a) C.J. Whiteoak, G. Salassa, A.W. Kleij, Chem. Soc. Rev. 41 (2012) 622–631;
 (b) A.K. Asatkar, S.P. Senanayak, A. Bedi, S. Panda, K.S. Narayan, S.S. Zade, Chem. Commun. 50 (2014) 7036–7039;
 - (c) A. Zulauf, X. Hong, F. Brisset, E. Schulz, M. Mellah, New J. Chem. 36 (2012) 1399–1407:

- (d) A. Pietrangelo, B.C. Sih, B.N. Boden, Z. Wang, Q. Li, K.C. Chou, M.J. MacLachlan, M.O. Wolf, Adv. Mater. 20 (2008) 2280–2284;
- (e) R.P. Kingsborough, T.M. Swager, J. Am. Chem. Soc. 121 (1999) 8825-8834.
- [6] (a) S.J. Wezenberg, A.W. Kleij, Angew. Chem. Int. Ed. 47 (2008) 2354–2364;
 - (b) A.K. Crane, M.J. MacLachlan, Eur. J. Inorg. Chem. (2012) 17–30.
- [7] (a) Y. Jung, S.J. Lippard, Chem. Rev. 107 (2007) 1387–1407;
 (b) E.R. Jamieson, S.J. Lippard, Chem. Rev. 99 (1999) 2467–2498;
 (c) K.I. Ansari, S. Kasiri, J.D. Grant, S.S. Mandal, Dalton Trans. 40 (2009) 8525–8531.
- [8] (a) G.H. Clever, C. Kaul, T. Carell, Angew. Chem. Int. Ed. 46 (2007) 6226–6236;
 (b) C. Kaul, M. Mu'ller, M. Wagner, S. Schneider, T. Carell, Nat. Chem. 3 (2011)
 - (c) L. Meistermann, V. Moreno, M.J. Priento, E. Molderheim, E. Sletten, S. Khalid, P.M.
 - (c) i. Mcdsternam, v. Moleno, M.J. Pileno, E. Moldefilelli, E. Stettell, S. Khalld, P.M. Rodger, M.J. Hannon, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 5069–5074;
 (d) W.C. Tse, D.L. Boger, Chem. Biol. 11 (2004) 1607–1617;
 - (e) S. Khalid, M.J. Hannon, A. Rodger, P.M. Rodger, Chem. Eur. J. 12 (2006) 3493–3506.
- [9] (a) T.J. Bandy, A. Brewer, J.R. Burns, G. Marth, T. Nguyen, E. Stulz, Chem. Soc. Rev. 40 (2011) 138–148;
- (b) H. Yang, K.L. Metera, H.F. Sleiman, Coord. Chem. Rev. 254 (2010) 2403–2415.
- [10] (a) G.H. Clever, C. Kaul, T. Carell, Angew. Chem. Int. Ed. 46 (2007) 6226–6236;
 - (b) J.L. Czlapinski, T.L. Sheppard, J. Am. Chem. Soc. 123 (2001) 8618–8619;
 (c) J.L. Czlapinski, T.L. Sheppard, ChemBioChem 5 (2004) 127–129;
 - (d) J.L. Czlapinski, T.L. Sheppard, Bioconjug. Chem. 16 (2005) 169-177.
- [11] (a) G.H. Clever, K. Polborn, T. Carell, Angew. Chem. Int. Ed. 44 (2005) 7204–7208;
 (b) G.H. Clever, Y. Söltl, H. Burks, W. Spahl, T. Carell, Chem. Eur. J. 12 (2006) 8708–8718
- [12] R. Brissos, D. Ramos, J.C. Lima, F.Y. Mihan, M. Borra's, J. Lapuente, A.D. Cort, L. Rodriguez, New J. Chem. 37 (2013) 1046–1055.
- [13] D. Xie, J. Jing, Y. Cai, J. Tang, J. Chen, J. Zhang, Chem. Sci. 5 (2014) 2318–2327.
- [14] M. Su, M. Tomás-Gamasa, T. Carell, Chem. Sci. 6 (2015) 632–638.
- [15] I. Giannicchi, R. Brissos, D. Ramos, J. Lapuente, J.C. Lima, A.D. Cort, L. Rodríguez, Inorg. Chem. 52 (2013) 9245–9253.
- [16] (a) E.I. Solomon, R.K. Szilagyi, S. DeBeer-George, L. Basumallick, Chem. Rev. 104 (2004) 419–458;
 - (b) L. Waxman, J. Biol. Chem. 250 (1975) 3796–3806;
 - (c) H.W. Duckworth, J.E. Colman, J. Biol. Chem., 245 (1970) 1613–1625;
 - (d) R.H. Richard, P. Kennepohl, E.I. Solomon, Chem. Rev. 96 (7) (1996) 2239–2314;
 (e) E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96 (7) (1996) 2563–2606;
 - (f) E.A. Lewis, W.B. Tolman, Chem. Rev. 104 (2004) 1047–1076.
- [17] (a) E.I. Solomon, R.K. Szilagyi, S. DeBeer-George, L. Basumallick, Chem. Rev. 104 (2004) 419–458;
 - (b) M.K. Taylor, D.E. Stevenson, L.E.A. Berlouis, A.R. Kennedy, J. Reglinski, J. Inorg. Biochem. 100 (2006) 250–259;
 - (c) Z. Zhu, L.M. Cunane, Z. Chen, R.C. Durley, F.S. Mathews, V.L. Davidson, Biochemistry 37 (1998) 17128–17136.
- [18] (a) S. Panda, G.R. Krishna, C.M. Reddy, S.S. Zade, Dalton Trans. 40 (2011) 6684–6690;
 - (b) P.K. Dutta, S. Panda, G.R. Krishna, C.M. Reddy, S.S. Zade, Dalton Trans. 42 (2013) 476–483;
 - (c) A.K. Asatkar, S. Panda, S.S. Zade, Cryst. Eng. Commun. 17 (2015) 1856–1864;
- (d) P.K. Dutta, A.K. Asatkar, S.S. Zade, S. Panda, Dalton Trans. 43 (2014) 1736–1743.
 [19] (a) S. Panda, G.R. Krishna, C.M. Reddy, S.S. Zade, Dalton Trans. 40 (2011) 6684–6690:

- (b) P.K. Dutta, S. Panda, G.R. Krishna, C.M. Reddy, S.S. Zade, Dalton Trans. 42 (2013) 476–483.
- [20] M.J. Frisch, et al., Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009 (for full reference, see Supporting Information).
- [21] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652;
- (b) W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257.
- [22] D.E.V. Schmechel, D.M. Crothers, Biopolymers 10 (1971) 465–480.
- [23] G. Song, Q. Yan, Y. He, J. Fluoresc. 15 (2005) 673-678.
- [24] Y. Sun, S. Bi, D. Song, C. Qiao, D. Mu, H. Zhang, Sensors Actuators 129 (2008) 799-810.
- [25] J.I.B. Janairo, G.C. Janairo, Analele Universității din București Chimie (serie nouă), 20, 2011 25–30.
- [26] (a) W. Levason, M. Nirwan, R. Ratnani, G. Reid, N. Tsoureas, M. Webster, Dalton Trans. (2007) 439–448;
 - (b) J.R. Black, N.R. Champness, W. Levason, G. Reid, Inorg. Chem. 35 (1996) 4432–4438.
- [27] J.R. Batchelor, F.W.B. Einstein, I.D. Gay, J. Gu, S. Mehta, B.M. Pinto, X. Zhou, Inorg. Chem. 39 (2000) g-2571.
- [28] (a) M.E. B.-Gómez, C. C.-Peredo, D. G.-Conde, M.J. M.-Santillán, J. S.-Guerrero, L. R.-Azuara, Polyhedron 102 (2015) 530–538;
 - (b) X. Zhao, Z. Li, Z. Zheng, A. Zhang, K. Wang, Dalton Trans. 42 (2013) 5764–5777;
 - (c) S. Rodríguez-Hermida, C. Wende, A. B. Lago, R. Carballo, N. Kulak, E. M. Vázquez-López, Eur. J. Inorg. Chem. (2013), 5843–5853;
 - (d) B.S. Kannan, D.S. Kumar, R.H.A. David, A. Stalin, S. Ignacimuthu, Inorg. Chim. Acta 432 (2015) 158–168;
 - (e) N. lizuka, S. Motoki, M. Nakai, Y. Nakabayashi, Inorg. Chem. Commun. 46 (2014) 145–148;
 - (f) Q.S. Li, P. Yang, H.F. Wang, M.L. Guo, J. Inorg. Biochem. 64 (1996) 181-195.
- [29] (a) H.A. El-Asmy, I.S. Butler, Z.S. Mouhri, B.J. Jean-Claude, M. Emmam, S.I. Mostafa, Inorg. Chim. Acta 441 (2016) 20–33;
 - (b) F. Asghar, A. Badshah, A. Shah, M.K. Rauf, M.I. Ali, M.N. Tahir, E. Nosheen, Z. Rehman, R. Qureshi, J. Organomet. Chem. 717 (2012) 1–8;
 - (c) P.J. Cox, G. Psomas, C.A. Bolos, Bioorg. Med. Chem. 17 (2009) 6054–6062.
- [30] S. Routier, J. Bernier, M.J. Waring, P. Colson, C. Houssier, C. Bailly, J. Organomet. Chem. 61 (1996) 2326–2331.
- [31] (a) I. Giannicchi, R. Brissos, D. Ramos, J. de Lapuente, J.C. Lima, A.D. Cort, L. Rodríguez, Inorg. Chem. 52 (2013) 9245–9253;
 - (b) R. Brissos, D. Ramos, J.C. Lima, F.Y. Mihan, M. Borras, J. de Lapuente, A.D. Cort, L. Rodríguez, New J. Chem. 37 (2013) 1046–1055.
- [32] (a) S. Anbu, A. Paul, R. Ravishankaran, M.F.C.G. da Silva, A.A. Karande, A.J.L. Pombeiro, Inorg. Chim. Acta 423 (2014) 183–193;
 - (b) T. Kiran, V.G. Prasanth, M.M. Balamurali, C.S. Vasavi, P. Munusami, K.I. Sathiyanarayanan, M. Pathak, Inorg. Chim. Acta 433 (2015) 26–34.
- [33] D.R. McMillan, K.M. McNett, Chem. Rev. 98 (1998) 1201-1220.
- [34] (a) D.S. Raja, N.S.P. Bhuvanesh, K. Natarajan, Eur. J. Med. Chem. 47 (2012) 73–85;
 (b) F.J. Meyer-Almes, D. Porschke, Biochemist 32 (1993) 4246–4253;
- (c) G.M. Howe, K.C. Wu, W.R. Bauer, Biochemist 19 (1976) 339–347.
 [35] (a) R. Indumathy, S. Radhika, M. Kanthimathi, T. Weyhermuller, B.U. Nair, J. Inorg.
 - Biochem. 101 (2007) 434–443; (b) T.H. Sanatkar, H. Hadadzadeh, Z. Jannesari, T. Khayamian, M. Ebrahimi, H.A.
- Rudbari, M. T.-Mahani, M. Anjomshoa, Inorg. Chim. Acta 423 (2014) 256–272. [36] T. Kiran, V.G. Prasanth, M.M. Balamurali, C.S. Vasavi, P. Munusami, K.I.
- Sathiyanarayanan, M. Pathak, Inorg. Chim. Acta 433 (2015) 26–34.

Volume I, Issue XX October To December 2017 U.G.C. Journal no. 64728

RNI No. – MPHIN/2013/60638 ISSN 2320-8767, E-ISSN 2394-3793 Impact Factor - 4.710 (2016)

Naveen Shodh Sansar

(An International Multidisciplinary Refereed Journal) (U.G.C. Approved Journal)

नवीन शोध संरगर

Editor - Ashish Narayan Shama

Office Add. "Shree Shyam Bhawan", 795, Vikas Nagar Extension 14/2, NEEMUCH (M.P.) 458441, (INDIA) Mob. 09617239102, Email : nssresearchjournal@gmail.com, Website www.nssresearchjournal.com

Scanned by CamScanner

Naveen Shodh Sansar (An International Refereed/ Peer Review Research Journal) (U.G.C. Jr. No. 64728) ISSN 2320-8767, E- ISSN 2394-3793, Impact Factor - 4.710 (2016) October to December 2017, Vol. I

155

Index/अनुक्रमणिका

01.	Index/ अनुक्रमणिका 01
<u>02.</u>	Regional Editor Board / Editorial Advisory Board
03.	Referee Board
04.	Spokesperson 10/11
	Science / विज्ञान)
05.	Visible light assisted photodegradation of Azure A dye using TiO $_2$ as semiconductor
06.	Mineralization 0f Fast Green Dye Using Nano Zinc Oxide In Presence Of Visible Light
07.	Comparative Study Of Different Solvent Extract Of Hibiscus Rosa Sinensis With
08.	A Review Paper On Study And Application Of 5-Sulphoantranilic Acid
09.	Radioactive Waste (Dr. Neeraj Dubey) 28
10.	Solid Waste Management with Reference to Khandwa City (Dr. Avinash Dube)
11.	Comparative Study Of Sirpur And Bilawali Talab Water Quality, Indore (M.P.)
12.	Ethnomedicinal Importance Of Some Weed Species Of Dhar District In Madhya Pradesh, India 34 (Dr. K. S. Alawa)
13.	The importance of weeds and oil seeds for the ethanol botanical study (Komal Modi)
14.	Biodiversity of Important Ethno Medicinal Tropical Fruit Plants under Social Forestry
15.	Role of Indian Traditional Culture for Environmental Conservation (Dr. Shail Bala Sanghi) 40
16.	Information & Communication Technique In Science & Teaching (Dr. Anchal Ramtake)
17.	Health Hazards in Social effect of Environment (Pratima Khare)
18.	Impacts of Cashless Activities in Developing India (Vibha Rathore, Dr. Shivkumar Shrivastava) 46
19.	A Comparative Study Among Boys And Girls Students Of Nursing Colleges In Udaipur
	Home Science / गृह विज्ञान)
20	. विभिन्न आयु की किशोरियों के स्वास्थ्य का बॉडी मास इन्डेक्स स्तर के परिप्रेक्ष्य में अध्ययन (डॉ. आभा तिवारी) 53
	Commerce & Management / वाणिज्य एवं प्रबंध)

1

Naveen Shodh Sansar (An International Refereed/ Peer Review Research Journal) (U.G.C. Jr. No. 64728) ISSN 2320-8767, E- ISSN 2394-3793, Impact Factor - 4.710 (2016) October to December 2017, Vol. I

CG

		SSN 2320-8761, 2 1000
		Consumer Perception-Plastic Money Changing Dimension And Its Impact (Dr. Deepali Agrawal) 59
4	<u>7</u> 2.	Consumer Forceptante Consumer Force
2	23. 24.	Business Decision For Modernization In Indore Garment Industry
	25.	The Analytical Study Of Insurance Sector (Rajkumar)
	26.	The Commercial Impact Of Study Life Insurance (Rajkumar)
	27.	The Study of Management in the Hospital Administration (Hemant Shrotiya)
	28.	भारत में कर सुधार : विकास के आइने में जीएसटी (डॉ. खुमेशसिंह ठाकुर, डा. गदालाल मालवाय)
	29.	इंदौर जिले के सामान्य बीमाधारकों पर विज्ञापन का प्रभाव (डॉ. एम.डी. सोमानी, पायल जैन)
	30.	भारत में कृषि आय पर आयकर – एक विवेचनात्मक अध्ययन (डॉ. मनोज महाजन, डॉ. सुधीर महाजन)
	31.	म. प्र के खरगोन जिले के कृषकों को प्राप्त ऋण की स्थिति का अध्ययन (विशेषकर अनुसूचित जनजाति वर्ग
	32.	प्रकृति की गोद में जीवन (डॉ. ज्योति सोनी) 86
1	((E	conomics / अर्थशास्त्र)
	33.	Demonetization In India (Dr. Rajeshwar Dinkar Rahangdale) 87
	34.	A Substantial Study on the Upcoming Trends & Dimensions of Accounting Education
	35.	GST - A Good And Simple Tax (Roshni Siddiqui)93
	36.	कृषि उपज मण्डी का कृषि विपणन पर प्रभाव (बड़वानी जिले के विशेष सन्दर्भ में) (सुनीता सोलंकी, डॉ. एस. के. मिश्रा)
	37.	असंगठित क्षेत्र में अनुसूचित जाति/जनजाति की कामगार महिलाओं की आर्थिक स्थिति का विश्नेषणात्मक
;	38.	आर्थिक व पारिवारिक कारणो का लड़कियों की शिक्षा पर प्रभाव (गरिमा वर्मा, पूजा गुरू, डॉ. प्रतापराव कदम) 101
	39.	जीएसटी का भारतीय अर्थव्यवस्था पर प्रभाव एवं चुनौतियाँ (डॉ. राजीव कुमार झालानी, डॉ. अंजना गोरानी) 104
	40.	उदयपुर में अनुसूचित जाति और अनुसूचित जनजाति की महिलाएँ एवं बैंकिंग (प्रीति जीनगर)
	41.	भारतीय अर्थव्यवस्था एवं केशलेस प्रणाली (डॉ. विमला जैन)
		Political Seience / राजनीति विज्ञान)
	42.	Media Accountability And Indian Democracy (Dr. Abba Saini)
	43.	Life and Political Career of Bakshi Ghulam Muhammad (Joyaid Ahmad Bhat)
	44	. अनुसूचित जनजातियों के मानव अधिकार पर नक्सलवादी प्रवृत्ति का प्रभाव (बालाघाट जिले के
	45	. दक्षिण कोसल में अन्तर्राज्यीय कूटनीति (डॉ. राजीव शर्मा, डॉ. अजय कुमार सिंह)

2

 Naveen Shodh Sansar (An International Refereed/ Peer Review Research Journal) (U.G.C. Jr. No. 64728)

 ISIN 2320-8767, E- ISSN 2394-3793, Impact Factor - 4.710 (2016) October to December 2017, Vol. I

 46. भारत चीन सम्बन्ध वर्तमान परिप्रेक्ष्य में – एक विवेचन (डॉ. वसुधा आवले)

 123

 47. सशक्त महिला – समृद्ध भारत (डॉ. समीना खटक)

 126

 48. वर्तमान में ग्रामीण महिलाओं की सामाजिक स्थिति – स्वास्थ्य एवं शिक्षा के सन्दर्भ में एक अध्ययन (डॉ. भावना ठाकुर)

 129

 49. भारतीय संवैधानिक मूल्यों के संरक्षण में न्यायिक सक्रियता की भूमिका (डॉ. सुमन तनेजा)

 132

 50. भारतीय नारी – कल और आज (एक विश्लेषणात्मक अध्ययन) (डॉ. प्रविता सिंह)

 134

 51. पंचायती राज सत्ता के विकेन्द्रीकरण का महायज्ञ (मध्यप्रदेश के संदर्भ में एक अध्ययन) (डॉ. मीनाक्षी पँवार)

 136

 52. अंतर्राष्ट्रीय राजनीति में नवीन आर्थिक उद्देश्य (डॉ. दिव्या शुक्ला)

(History / इतिहास)

53.	The Growth of Education and Development of Educational Institutions in Ambala
54.	British Colonial Empire: Saga of expansion in Kalat Balochistan (Dr. Amita Sonker) 143
55.	The Political study of Mughal Royal Ladies (Seema Jaiswal) 146
56.	हिन्दू धर्म में शक्ति –पूजा (डॉ.जगमोहन सिंह पूषाम) 148
57.	लोक कल्याणकारी शासक के रूप में अशोक महान् (नेहा चौहान) 151
58.	सन् 1857 ई. के समर में धार के स्मारक और स्थल एक ऐतिहासिक सिंहावलोकन (डॉ. आकाश ताहिर) 154
59.	उत्तर वैदिक काल में सामाजिक एवं राजनीतिक व्यवस्था (सुमिता पाण्डेय)

(English Literature / अंग्रेजी साहित्य)

60.	Role of Myths, History, Tradition in the plays of Tagore and Karnad (Dr. Manjari Agnihotri)	159
61.	Girish Karnad - Naga - Mandala Talking Tales (Dr. Pankaja Acharya)	162
62	Humour and Pathos in <i>TristramShandy</i> by Laurence Sterne (Preeti Sharma)	165

(Hindi Literature / हिन्दी साहित्य)

62.	उड़िया भाषा व साहित्य का संक्षिप्त इतिहास (डॉ. रमेश टण्डन)	167
63.	प्राचीन एवं अर्वाचीन कहानियों में प्राणी जगत : एक अनुशीलन (डॉ. शोभना जोशी, कामना गुप्ता)	170
64.	मानवीयतावाद और कामायनी (डॉ. गायत्री वाजपेयी, डॉ. अश्वनी कुमार वाजपेयी)	173
65.	परसाईजी और व्यंग्य विधा (डॉ सरोज जैन)	175
66.	समकालीन उर्दू शायर डॉ. अख्तर नज़्मी के 'दोहों' में सांस्कृतिक एकता (डॉ. रशीदा खान)	177
67.	भारत में आदिवासी वर्ग चेतना – हिन्दी उपन्यास का संदर्भ (डॉ. रंजना मिश्रा)	179
68.	आत्मीयता और मानवीय सम्बंध – अशोक बाजपेयी (डॉ. मनीषा मरकाम)	181
69,	दलित साहित्य में चेतना का स्वरूप (डॉ. बिन्दु परस्ते)	183

Scanned by CamScanner

	U.G.C. Jr. No. 64728) (U.G.C. Jr. No. 64728) (U.G.C. Jr. No. 64728) (U.G.C. Jr. No. 64728)	4
'n	Naveen Shodh Sansar (An International Reference actor - 4.710 (2016) October to December 2015 Naveen Shodh Sansar (An International Reference actor - 4.710 (2016) October to December 2015	\geq
) । अन्य प्रतिना (प्रो. बी. एस. जमरे)	185
70	0. व्यक्तिनिष्ठ उपन्यासा में महाकाव्यासिक दीवारों में कैद नारी की आत्मकथा (डॉ. संगीता निर्वेल)	187
7	1. प्रभा खेतान – अनुलध्य सामाजवन्य प्रतीकात्मक नाटक (डॉ. सुशील ब्यौहार)	189
72	2. आषाढ़ का एक दिन . आप राज्य व्या भावनिसंह 'सुमन' (डॉ. पारसमणि गुप्ता)	191
73	3. प्रगातशाल काव्य जार आराम गया व्यक्ति की पीड़ा (डॉ. सुशील सोमवंशी)	193
74	१. समकालान हिन्दा गुज़ल न साथ अग्रवाल)	195
75	. नया कावता . गया घृन्ट (आ याजवा) जन्में प्रतनंबना संगाम सेनानियों और महापुरूषों की धरा छत्तीसगढ़ (डॉ. अनसूया अग्रवाल)	197
76	. सता, स्वतंत्रता संप्रान समान वा व्याहार जन्मचेतना के कवि : धमिल (अमिता ब्यौहार)	199
	Sanskrit / संस्कृत)	201
78.	. अध्यात्म रामायण के अनुसार भारत का भौगोलिक अध्ययन (डॉ. वेदप्रकाश मिश्र, उमा सिंह चन्दल)	206
79.	संस्कृत वांग्यमय में पर्यावरण संरक्षण एंव पंचतत्व महात्म्य (डॉ. रेनू शुक्ला, कृष्ण कुमार पण्डिय)	200
80.	हरविजय महाकाव्य में पर्यावरणीय समस्याओं के समाधान हेतु उपाय (डॉ. रेनू शुक्ला, कृष्ण कुमार मास्पर)	200
	Geography / भूगोल) (Sociology / समाजशास्त्र) (Psychology / मनोविज्ञान)	
81.	Assessment Of Groundwater Quality Using Remote Sensing And GIS Tools Of Obedullaganj Area District Raisen (M.P.) (Pooja Wankhade, R. S. Raghuwanshi, H. U. Usmani, Gopal Rathore	211 e)
82.	जैविक कृषि एवं पर्यावरण (डॉ. एल. आर. पटेल, कल्पना द्विवेदी) 2	214
83.	प्रवाहित जलमार्ग में अवरोधक निर्माण का पर्यावरण पर कुप्रभाव (डॉ. नीरज कुमार सोनी)	216
84.	कम्भलगढ में पर्यटन प्रबन्धन एवं सामाजिक विकास (तरूण दुबे)	219
85.	रांचार साधनों पर बढ़ती निर्भरता और संबंधों में बदलाव के सकारात्मक एवं नकारात्मक पक्ष (डॉ. कल्पना कोठारी) 2	22
86. 3	बस्तर के आदिवासियों के देवी–देवता एवं उनके प्रतीक चिन्ह (डॉ. किरण नुरूटी)	25
87. 3	सामाजिक परिवेश में बालकों का समस्यात्मक व्यवहार एवं समाधान : एक मनोवैज्ञानिक विश्लेषण (डॉ. उमा लवानिया) 2	27
88.	संचार क्रांति से भाषा का बदलता परिदृष्य (डॉ. सुधा लाहोटी) 2	29
89.	वर्तमान समय में प्रशासन में दर्शन शास्त्र की उपयोगिता (अखिलेश जैन) 2	31
(L	aw/ विधि)	
90.	Judicial approach on Electoral reform in india - A brief study (Lok Narayan Mishra)	33
91.	Environment Pollution And Legislative Solution - Problms, Processes And Prospects	36
92.	Influence Of Political Sociology In Politics And Society (Dr. Rakhi Sinha) 2	39
93.	Evolution Of Right To Privacy As Fundamental Right (Aprajita Bhargava) 2	42

Scanned by CamScanner

Naveen Shodh Sansar (An International Refereed/ Peer Review Research Journal) (U.G.C. Jr. No. 64728) ISSN 2320-8767, E- ISSN 2394-3793, Impact Factor - 4.710 (2016) October to December 2017, Vol. I

डॉ. किरण नुरूटी *

आकार के रूप में दर्शन होते हैं।

धातु युग के आगमन के साथ ही इसे धातु रूप में गांव के जिमीदारिन शीतला मंदिर(गुड़ी) में सर्वप्रथम मिट्टी से बने हाथी, घोड़ा, बैल आदि बनाकर मिट्टी को पूजा जाता रहा है। कालान्तर में पराक्रमी, साहसी देव पुरूषों के प्राण प्रतिष्ठा के समय सफेद घोड़े की मुर्ति स्थापित करने का चलन है, विशेषकर राजा राव देव ,भंगाराम जैसे देव के लिए। औद्योगीकरण और यातायात के साधनों ने इस वनांचल में भी अपना प्रभाव डाला और मिट्टी के अलावा बांस के साथ विभिन्न रंगों के कपड़ों से ध्वज (डांग) बनायी जाने लगी और उसे श्रृंगारित रूप में लाने के लिए डांग के ऊपर कांसा या पीतल से बने युंघरू से युक्त छत्र चढ़ाया जाता है। इस प्रकार के युंघरू युक्त छत्र को भरेवां जाति के लोग बनाते हैं, जिन्हें यडवा भी कहा जाता है। आंगा में चांदी के गहने नाग-पास मोरी धारण करने की प्रथा आधुनिक धातु युग की देन है।

225

आदिकाल में प्रकृति के सानिध्य में रहने के कारण आदिवासियों के पुरखों का प्रतीक चिन्ह प्रकृति में पाए जाने वाले पेड़-पौधे, लता, बांस, आदि से बनाए जाते हैं। साजो शृंगार के नाम पर सिर्फ मोर पंख सुरही गाय की पुंछ आदि का प्रयोग करते थे, परन्तु कालान्तर में सभ्यता के विकास के साथ कपड़ा एवं अन्य धातुओं का प्रयोग होने लगा और छड़, सकरी(सांकल) मुयांग(युंधरू) छत्तर, कड़ा आदि धातुओं का प्रयोग किया जाने लगा।

बस्तर में पाए जाने वाले अधिकांश प्रतीक चिन्ह मातृ-शक्ति और पितृ-शक्ति को समर्पित है और ये इस क्षेत्र में रहने वाले अनन्य समाज और समुदाय में पृथक-पृथक रूप और स्वरूपों में ढाले जाते हैं/निर्माण किए जाते हैं। विशेष तौर पर पितृ-शक्ति की स्थापना हेतु आंगा और मातृ-शक्ति के लिए डांग डोली का निर्माण किया जाता है। कुछ लोग लोहे के छड़ी और प्राचीन घरेलू औजार को भी देव-शक्ति पुरखा-शक्ति के रूप में स्थापित करते हैं। हजारी फुलों से गूथे गये डांग को मड़ई डांग कहा जाता है, जिसे विशेष रूप से निशाद मांझी समाज के लोग स्थापित करते हैं। आंगा बस्तर में दो तरह से निर्मित किए जाते हैं-पहला जिसे चार लोग अपने कंधों से उठाते हैं। दूसरा जिसे एक ही व्यक्ति द्वारा उठाया जाता है। आंगा के रूप में स्थापित पुरखा प्रतीकों में दो तरह के आंगा को उसके स्वरूप से नहीं जाना जा सकता कि कौन मातृ-शक्ति के रूप में और कौन पितृ-शक्ति के रूप में पूजा जाता है यह सिर्फ नाम से ही जाना जा सकता है।

अन्य समाज के लोग जब सामान्य ढंग से सोचते हैं, तो आंगा, डोली, डांग आदि का मतलब लकड़ी से और धातुओं से मिश्रित सामान्य सी आकृति मान लेते हैं। जिसे आदिवासी लोग अपना देव मानकर, समझकर पूजा अर्चना करते हैं, परन्तु यह सामान्य समझ से बिल्कुल ही अलग है। इनके निर्माण की प्रक्रिया बहुत ही जटिल और दीर्घकालिक है। कभी –कभी देव के निर्माण

* सहायक प्राध्यापक (समाजशास्त्र) शासकीय गुण्डाधूर स्नातकोत्तर महाविद्यालय, कोण्डागाँव (छ.ग.) भारत

प्रस्तावना – छत्तीसगढ़ प्रान्त का बस्तर संभाग जहां 66 प्रतिशत जनसंख्या आदिवासियों की है। जहां उन्होंने अपना सदियों पुराना रहन–सहन, रीति– रिवाज, सामाजिक एवं धार्मिक संगठन उसी रूप में सुरक्षित रखा है, इसलिए यहां के आदिवासियों का अपनी अलग विशिष्ठ पहचान बनी हुई है।

प्राचीन बस्तर विरासत काल में शासन व्यवस्था को सुचारू रूप से संचालन हेतु पूरे बस्तर को अठ्ठारह गढ़ों में विभाजित किया गया था। कई गांव मिलकर परगना और कई परगनों को मिलाकर गढ़ व्यवस्था की गई थी। इसलिए बस्तर के एक महत्वपूर्ण देव अडारह गढ़िया के नाम से जाना जाता है। इसके अलावा हल्बा जनजाति में सामाजिक सीमा अहारह गढ़ों के ह्म में आज भी मान्यता प्राप्त है। वस्तुत: इन गढ़ों की जानकारी इतिहास के पन्ने पलटने पर अवश्य प्राप्त होगें। परन्तु वर्तमान में इसकी जानकारी क्तावेज के रूप में विद्यमान नहीं हैं। इन स्थापित गढ़ों में गढ़ देवी की श्वापना की गई, इस हेतु राजतंत्र में राजकीय सेवा में पदधारित व्यक्ति जो उस तात्कालिन समय में गढ़ एवं परगना क्षेत्र के लिए नियुक्त किया जाता गा जैसे-हिकमी, चालकी, मुकड़ढ़म, कोटवार, मांझी, पटेल, गांयता, सेरदार, पूजारी, पंजियार जिन्हें राजाश्रय प्राप्त हुआ। ये राजाश्रय प्राप्त कूछ **बेशेष जाति हल्बा, गोंड़, मुरिया, माड़िया, दण्डामी माड़िया जाति के लोग** ज़ पदों पर राजाज्ञा से नियुक्त किए जाते थे। इनके व्दारा अपनी कुल देवी गेगढ देवी के रूप में स्थापित करते थे तात्पर्य यह होता था कि उस गढ़ ोत्र में सर्वोच्च शक्तिमान देव शक्ति के रूप में आराध्य माना जाता था। किसी ी आदिवासी अंचल में किसी भी पर्व में जैसे नवाखानी, चैतरई, में इसी गढ़ बीमें नयी फसल का अर्पण कर पर्व की शुरूआत की जाती है इसके पश्चात् परगना देव कुटुम्ब देव और ग्राम देव तथा अपने ईष्ट एवं पितरों को 🖤 एवं अर्पण करने का विधान आदिकाल से प्रचलन में है।

इस तरह पूरे बस्तर में अद्वारह गढ़ हैं। इन अद्वारह गढ़ों में गढ़ देवी ^{रता} प्राचीन रियासत कालीन व्यवस्था अनुसार आज भी संचालित होते -जैसे कुम्हडाकोट, बस्तर, नारायणपुर, छोटेडोंगर, बडेडोंगर, ढंतेवाडा के ^{लिवा} अन्य क्षेत्रों में भी इस व्यवस्था को मान्यता प्राप्त है। इसके अधीन ^{जिभी} यहां के देवीय संबंधों को जाना जा सकता है। ये गढ़ देवी काकतीय ^{जाओं की} कुल देवी मां ढंतेश्वरी एवं नागवंशी राजाओं की कुल देवीय ^{जिभेश्वरी} (मावली) के प्रतिनिधि के रूप में या राजा से मान्यता प्राप्त ^{श्रे}वी के रूप में आस्था का केन्द्र था, इसलिए राजा के करीबी-सहयोगीयों ^{कुल} देवी को ही गढ़ देवी के रूप में मान्यता मिली।

भोजन से लेकर जीवन के लिए सभी वस्तुएं प्रकृति से प्राप्त करने की ^{भिया} ने ही इन मूल निवासियों को अपने पुरखों की अथाह ज्ञान, गुण भेरेणा शक्ति को काष्ट के देवों में बांधकर रखने की क्षमता पैदा की, ^{भेद इसी}लिए यहां के आदिवासी देव डांग, डोली, आंगा और विभिन्न Naveen Shodh Sansar (An International Refereed/ Peer Review Research Journal) (U.G.C. Jr. No. 64728) aveen Shodh Sansar (An international transfer factor - 4.710 (2016) October to December 2017, Vol. 1 ISSN 2320-8767, E- ISSN 2394-3793, Impact Factor - 4.710 (2016) October to December 2017, Vol. 1

में दस से पन्द्रह वर्ष लग जाते हैं, तब कहीं वह आस्था के रूप में पूजने योग्य बनता है।

सभ्यता के विकास के साथ मानवीय परम्परा, संस्कृति, धर्म, सम्प्रदाय और समाज का उन्नयन उत्थान और पतन हुआ, इसी के साथ पंथवाद ने अपनी विरासत को स्थायी स्वरूप में स्थापित करने का विचार किया। तब से अब तक पूरे ईश्वर के आस्था को व्यक्त करने के लिए निगूर्ण-सगुण धारा साकार और निराकार मार्ग को चुनकर तदनुरूप प्राचीन परम्परा संस्कृति को हम अभिलेख शिलालेख एवं अन्य ऐतिहासिक मापदण्डों को पढ़ते समझते है। जनजातीय समाज में सगुण, साकार धारणा और मान्यता के अनुसार अपने ईष्ट और आराध्य को साकार रूप में स्थापित करने की प्रथा प्रचलित है। जिसे हम लाट(डांग), डोली, आंगा देव के रूप में प्रत्यक्ष दर्शन करते है। ये साकार रूप सम्पूर्ण विधान से निर्मित मान्यता प्राप्त देव प्रतीक होते हैं, जो कि मातृ–शक्ति तथा पितृ–शक्ति का प्रतिनिधित्व और सर्वगुण सम्पन्न विशेष गुर्णो से युक्त होते हैं। इन आकृतियों के अलावा भी काष्ट और लौह निर्मित छोटे बड़े अनुकृति, छड़ी, जंगली पशु–पक्षी आदि होते हैं, जो कि किसी विशेष जाति समुदाय, गोत्र समूह का प्रतिनिधित्व करते हैं। इनकी भी विशेष पहचान एवं मान्यता होती है और एक अलग प्रकार का पूजा विधान होता है। बस्तर में प्रचलित देव विधान को समझने के लिए मान्यतानुसार यहां के देवी देवताओं को दो वर्गों में विभाजित किया जा सकता है।

1. गुप्तदेव- पूरे बस्तर के अहारह गढ़ तिलश्म और रहरयों से ओत प्रोत है, कुछ गुणी और सिद्ध बैगा द्वारा अपनी सिद्धशक्ति और विरासत में मिले केवल अपने अभिष्ठियों की प्राप्ति हेतु निराकार देवों की उपासना और सिद्धी करते हैं। यह पूर्णत: तांत्रिक क्रियाओं पर आधारित होता है और तंत्र मंत्र और साधना के बल पर साधक कुछ मायावी ताकत और बुरी आत्माओं को अपने वश में कर अपनी मनोवांछित कामना पूरी करते हैं। टोनही-टोनहा, सोधे, परेतीन, सिद्धो, र्मिचुक, मटिया, कैना, राव, भैंसासूर जैसे देवी देवता गुप्त देव के रूप में जाने जाते हैं। इस तरह के देवी देवता गुप्त देव के रूप में जाने जाते हैं। इस तरह के देवी-देवता का उपयोग काला जादू के लिए किया जाता है। इस गुण का उपयोग अधिकांशत: विध्वंशक रूप में किया जाता है। इस सन्दर्भ में वंशीकरण, मोहनी–पुठा, बान मारना, मनुष्य को शारीरिक, मानसिक रूप से पंगु बनाना, कभी कभी किसी व्यक्ति को जान से मारने. धन की हानि पहुंचाने के लिए किया जाता है।

 प्रकटदेव - आदिवासी प्रकृति के सानिध्य में आदिकाल से रहे हैं। प्रकृति की पांच महाशक्तियों(अग्नि, जल, आकाश, पृथ्वी, वायु) को प्रकट रूप में ईश्वर तुल्य मानकर अराधना करने का विधान है। आदिवासी इन पांच महाशक्तियों को ही बड़ादेव कहता है, जिसके बिना सृष्टि चल ही नहीं सकती। वही सर्वशक्तिमान सल्ला गागरा फड़ापेन और कहीं सिंगबोगापेन या देव के रूप में अराध्य हैं। जनजातिय समाज मातृ सतात्मक समुदाय है यहां पर मातृ-शक्ति को बहुत सम्मान प्राप्त है, इसलिए मातृ-शक्ति को बूढ़ीमाता और पितृ–शक्ति को बुढ़ादेव के रूप में स्थापित कर पीढ़ी दर पीढ़ी पूजा करने की परम्परा सदियों से बस्तर में प्रचलित है। चूंकि यह प्रकट रूप में होता है अर्थात् प्रत्येक मनुष्य के कोई न कोई माता और पिता होते हैं, जिन्हें स्वर्गीय मान्यता प्राप्त होने के पश्चात् आस्था, श्रद्धा और पारम्परिक निष्ठा स्वरूप बुढ़ादेव और बूढ़ीदई के रूप में शक्ति स्वरूप में प्रत्येक घर में स्थापना कर, हर पर्व त्यौहार में उसे स्मरण करना हर आदिवासी का नैतिक धार्मिक और सामाजिक कर्तव्य माना जाता है। इसे हर घर में पृथक कक्ष और ऊंचा रथान देकर उस स्थान में दिया जलाने की परम्परा है। इसे डोकरा खोली के नाम से जाना जाता है। बड़ा संयुक्त, परिवार होने पर नोत्र या वंश के देव के नाम स जाजा जारा दू रूप में इन्हीं मातृ और पितृ शक्तियों को डांग डोली, आंगा या अन्य अनुकृतियों मेला जात्रा आदि स्थलों में हमें प्रकट रूप में दिखाई देते हैं।

226

परम्परा और मान्यताओं में संशोधन समुदाय में बढ़ती आबादी के बीच की आवश्यकता है और विशेषकर आधुनिक वैज्ञानिक सोच के कारण जनजाति समाज में क्रांतिकारी बढलाव आया है, जो परिलक्षित ही हो रहा है। यही कारण है कि नवीन पीढ़ी इन प्रक्रियाओं से पीछे छूटता जा रहा है, साथ ही विभिन्न पंथ-सम्प्रदाय के अनुगामी बनने और संस्कृति के सम्पिश्रण से उपजी व्यवस्था और चिंतन के कारण लोग पुरानी मान्यताओं को तिलांजली दे रहे हैं। इसमें बाम्हणवाद, ईसाईवाद और इस्लामिक धर्म प्रचार और आक्रमण का गहरा आघात भी कारण है। जिसके सानिध्य और भय से इन सब प्राचीन विधानों को भुलना पड़ा और अपने परिवार, समाज और समुदाय को विस्मृत कर देना पडा।

मध्य युग में इन देव प्रतीकों को विदेशी आक्रांताओं से बचाते बचाते ये कुछ मानव समूह घने जंगल कंदराओं और गुफाओं में शरण लिए और रथापित प्राचीन मान्यताओं और मंदिरों को नष्ट कर दिया गया साम्राज्यवादी विदेशियों ने इस भूमि पर केवल औपनिवेशिक आक्रमण ही नहीं किया वरन धरती के इस खण्ड में सांस्कृतिक आक्रमण की श्रृंखला खड़ी कर यहां के ऐतिहासिक धरोहर और विरासत को जमींदोज करने का स सम्भव प्रयास किया गया। यह बात इतिहास में दर्ज है कि इस कालखंड में आदिवासियों ने अपने अस्तित्व को बचाने के अंधेरे गुफा में अपना ठिकाना बनाया, यही कारण है कि मध्य युग में इस तरह के देव अनुकृति डांग, डोली, आंगा देव का निर्माण बहुत ही कम हुआ। वर्तमान में इस तरह के देव आकृति देखे जाते हैं। वे आदिम और अतिप्राचीन हैं, चूंकि आधूनिक यून में सत्य और विश्वास को कायम रखने वाले अवतार पुरूषों की सख्या में निरन्तर गिरावर आयी है। इस कारण देव विधान की यह प्रक्रिया स्थिल पड़ गई।

संसार के समस्त अति प्राचीन ग्रंथों में माता-पिता को सर्वोच्च स्थान दिया जाता है और सभी धर्म ग्रंथों में इन्हें पूज्य माना जाता है। इसी तरह आदिम कोयतुर (गोंड) समाज में पितृ और मातृशक्ति को अराध्य मानकर उसे जीवित अवस्था में आदर करते हैं और मृत्यू के पश्चात् इनके नाम की अनुकृति स्थापित कर देव तुल्य पूजा करने का विधान है। जिस तरह हिन्दु धर्म में राम, कृष्ण, विष्णु के मृतिं स्थापित कर उन्हें अपना अराध्य समझ कर पूजा अराधना की जाती है। उसी तरह आदिवासी अपने पीढ़ी पुरखा की पीढी पत्थर, डांग, आंगा, डोली के रूप में स्थापित कर उसकी पूजा विधान सम्पन्न करने की पृथक-पृथक परम्पराएं प्रचलित है।

प्रत्येक स्वर्गवासी, आदिवासी समाज में बुढ़ादेव और बूढीमाता के रूप में मान्यता प्राप्त होता है। मान्यता है कि स्थापित अनुकृति डांग, डोली, आंगा में स्वर्गीय व्यक्ति की आत्मा के अंश विद्यमान होते हैं यह संदआत्मा, परिवार, समाज, समुदाय की मंगल कामना, बाधाओं, जीवन के शारीरिक मानसिक व्याधियों से दूर रखती है, इस हेतु समूह विशेष को अपने आय की सेवा और सम्पण की आवश्यकता होती है। मार्ग से हटकर मान्यता से अलग प्रक्रिया से सम्पन्न की गई पूजा विधान से कभी-कभी ईष्ट नारज भी हो जाते हैं। इसका परिवार, समाज और समुदाय में विपरीत प्रभाव पड़ता जे रेन्ट्रेन्ट्र

है, ऐसी मान्यता है। संदर्भ ग्रंथ सूची :-

1. व्यक्तिगत शोध के आधार पर।

Revised: 16 April 2019

RESEARCH ARTICLE

Explication of bovine serum albumin binding with naphthyl hydroxamic acids using a multispectroscopic and molecular docking approach along with its antioxidant activity

Rainy Agrawal¹ I Mohammad Khursheed Siddiqi² I Yamini Thakur¹ I Mamta Tripathi¹ I Ashish K. Asatkar³ Rizwan Hasan Khan² Rama Pande¹

¹ School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India

² Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India

³ Gov. Gundadhur P.G. College, Kondagaon, Chhattisgarh, India

Correspondence

Dr Rama Pande and Rainy Agrawal, Professor and UGC-BSR Faculty Fellow, School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur (C.G.) 492010, India. Email: rainyagrawal14@gmail.com; rama. pande11@gmail.com

Funding information

DST for awarding Inspire Fellowship to MT, Grant/Award Number: (DST/IN-SPIRE Fellowship/2013/635); financial assistance under scheme RGNF to Y.T., Grant/Award Number: (F117.1/2014-15/RGNF-2014-15-ST-CHH-57303/SAIII/Website); SRF, Grant/ Award Number: Department of Biotechnology, India; UGC for providing BSR Faculty Fellowship to R.P., Grant/Award Number: Grant No. F.No. 18-1/2011(BSR), Id 201617-BSRFACULTY-10225-1; Senior Research Fellowship

Abstract

In the present investigation, the protein-binding properties of naphthyl-based hydroxamic acids (HAs), N-1-naphthyllaurohydroxamic acid (1) and N-1-naphthyl-pmethylbenzohydroxamic acid (2) were studied using bovine serum albumin (BSA) and UV-visible spectroscopy, fluorescence spectroscopy, diffuse reflectance spectroscopy-Fourier transform infrared (DRS-FTIR), circular dichroism (CD), and cyclic voltammetry along with computational approaches, i.e. molecular docking. Alteration in the antioxidant activities of compound 1 and compound 2 during interaction with BSA was also studied. From the fluorescence studies, thermodynamic parameters such as Gibb's free energy (ΔG), entropy change (ΔS) and enthalpy change (Δ H) were calculated at five different temperatures (viz., 298, 303, 308, 313 or 318 K) for the HAs-BSA interaction. The results suggested that the binding process was enthalpy driven with dominating hydrogen bonds and van der Waals' interactions for both compounds. Warfarin (WF) and ibuprofen (IB) were used for competitive site-specific marker binding interaction and revealed that compound 1 and compound 2 were located in subdomain IIA (Sudlow's site I) on the BSA molecule. Conclusions based on above-applied techniques signify that various non-covalent forces were involved during the HAs-BSA interaction. Therefore the resulted HAs-BSA interaction manifested its effect in transportation, distribution and metabolism for the drug in the blood circulation system, therefore establishing HAs as a drug-like molecule.

KEYWORDS

bovine serum albumin (BSA), circular dichroism, fluorescence spectroscopy, molecular docking, naphthylhydroxamic acids

1 | INTRODUCTION

Pharmacological and pharmacokinetic properties of drugs depend upon their interaction with carrier protein present in blood plasma.^[1] Serum albumin is one of the most essential proteins, and comprises 60% of plasma protein.^[2] It has a distinct role, ranging from binding, transportation to delivery of various exogenous and endogenous ligands.^[3,4] Such diverse actions of serum protein facilitate the investigation of albumin as a carrier of small molecules. The successive binding of small molecules with protein enhances their ability as drug carriers. In addition, serum albumin also maintains blood osmotic pressure, which is associated with stabilizing the pH of the blood.^[5] Bovine serum albumin (BSA) is the most abundant, non-glycosylated, multifunctional globular protein with a molecular mass of 66.4 kDa. X-ray

1

crystallography revealed that it was composed of three homologous domains with the 1-195 amino acids being in the first domain, the 196-383 amino acids in the second domain and the 384-583 amino acids in the third domain.^[6] Disulfide linkages have dual characteristics, the first to support and strengthen linkages, and the second to change protein proximity during favourable conditions to enables the drug to bind to biomolecules. The three domains that make up BSA are again divided into two more domains called A and B, therefore a total of six subdomains are present in the BSA structure.^[7] The feasibility of a drug to reach its site of action (cells) depends upon its protein-binding ability, which in turn is decided by the pharmacokinetic properties of the protein.^[8] In blood plasma, interaction of small molecules (drug) with serum albumin may change the molecular conformation of serum, and hence affect the physiological function of the protein.^[9] Researchers have explored the potency of small molecules, possibly to design an effective anti-cancer drug and explore their mechanism of delivery at the target site.^[10]

Hydroxamic acids (HAs), (RC(=O)N(OH)R') are an important class of bio-ligand due to their use in chemical and medicinal industries.^[11] Recently, it was found that this weak acid has properties that are similar to those of drug-like molecules that function as anti-cancer, antimalarial, anti-bacterial and anti-fungal agents.^[12] Deducing the mechanism of HAs action, it was observed that this molecule could bind to nucleic acids (DNA/RNA).^[13,14] which resulted in an alteration in the conformation of DNA. This change in DNA conformation after binding was the basic marker step of its anti-cancer properties.^[15,16] Numerous studies have been undertaken by Pande and colleagues, exploring the biological properties of naphthyl derivatives of HAs such as measurement of various quantitative structure-activity relationship (OSAR) parameters.^[17] their DNA binding efficacy^[18] and evaluation of the antioxidant propensities of HAs.^[19] Therefore, keeping in mind the importance of HAs derivatives in various biological activities, our keen interest was to determine the protein-binding properties of

naphthyl derivatives of HAs. An evaluation of the protein-binding propensities of any drug is another important biological aid in establishing it as an effective anti-cancer agent. In this study, we examined HAs-BSA interaction using UV-visible spectrophotometry, fluorescence spectrophotometry, circular dichroism (CD), cyclic voltammetry, diffuse reflectance spectroscopy-Fourier transform infrared (DRS-FTIR) and molecular docking techniques.

2 | MATERIALS AND METHODS

2.1 | Materials

Naphthyl derivatives of HAs, i.e. N-I-naphthyllaurohydroxamic acid (1) and N-1-naphthyl-p-methylbenzohydroxamic acid (2), were used for the present study and were synthesized as described previously^[20] with the structures presented in Figure 1. The synthesized compounds were crystallized three times with benzene and dried over phosphorous pentaoxide (P2O5) for further purification. UV-visible, DRS-FTIR spectra, melting point, and NMR determination were carried out to confirm the purity of the compound and were compared with results found in the reported literature. The DRS-FTIR spectra for compound 1 (Figure S1) and for compound 2 (Figure S2); ¹H-NMR spectra for compound 1 (Figure S3) for compound 2 (Figure S4); and ¹³C-NMR spectra for compound 1 (Figure S5), for compound 2 (Figure S6) are summarized in Supporting Information. A TEMPO melting point apparatus was used to measure the melting temperature. A Vario-EL analyser was used to perform elemental analysis. A Nicolet iS10 spectrometer (Thermo Fisher) was used to obtain DRS-FTIR spectra using KBr pellets. NMR spectral analyses were performed using a Bruker Ascend 400'54 ULH Magnet System.

BSA and 2, 2'-diphenyl-1-picrylhydrazine (DPPH) were purchased from Merck (India) and used without further purification. Cartoon

4F5S) structure of BSA, bovine serum albumin obtained from RCSB PDB site, (b) structure of N-I-naphthyllaurohydroxamic acid and (c) N-1naphthyl-*p*-methylbenzohydroxamic acid

FIGURE 1 (a) Cartoon and residue (PDB id-

and residue (protein Data Bank (PDB) Id-4F5S) structures for BSA, obtained from the RCSB PDB site are shown in Figure 1(a). Warfarin (WF) and ibuprofen (IB) were purchased from Sigma-Aldrich and were used as received. Citrate phosphate (CP) (0.005 M) buffer solution (pH 7.4) was prepared from citric acid and disodium hydrogen phosphate in distilled water at pH 7.4.^[21] Analytical grade reagents were used throughout the experiment without further purification. BSA at a concentration of 1.00×10^{-6} M was prepared by dissolving the protein in CP buffer solution at pH 7.4. Using a molar absorption of 44 720 M⁻¹ cm⁻¹ at 280 nm^[22,23], its concentration was determined spectrophotometrically on a Cary-50 UV-visible spectrophotometer (Varian).^[24] The stock solutions of the synthesized compounds $(1.00 \times 10^{-3} \text{ M})$ were prepared by dissolving the compounds in dimethyl sulphoxide (DMSO). Stock solutions of warfarin (WF) (1.00×10^{-6}) and ibuprofen (IB) $(1.00 \times 10^{-6} \text{ M})$ were prepared by dissolving their crystals in DMSO. Appropriate dilutions of the stock solutions were made to obtain the standard working solutions. The characteristics of the synthesized compounds are as follows:

N-1-naphthyllaurohydroxamic acid (1): molecular formula – $C_{22}H_{31}NO_2$; MS (ESI): m/z - Found 341.24 [M+ H]⁺; Calculated 341.00 [M+ H]⁺; M.P. (°C) 97; Elemental Analyses (%) - Found C, 77.63; H, 9.42; N, 4.16; Calculated C, 77.38; H, 9.15; N, 4.10 IR – (cm⁻¹): 3125 (N-OH); 1639 (C=O). ¹H NMR (400 MHz, CD₃OD) δ 2.46 (s, 1H), 4.69 (s, 1H), 5.01 (s, 5H), 1.66 (d, 1H), 8.74 (dt, 2H), 3.97 (dd, 2H).¹³C NMR (100 MHz, CD₃OD) δ 49.19, 48.98, 48.77, 48.55, 48.34, 48.13, 47.92, 40.46, 40.25, 40.04, 39.83, 39.62, 39.41, 39.20, 32.48, 30.15, 29.88, 23.23, 14.54.

N-1-naphthyl-p-methylbenzohydroxamic acid (2): molecular formula – $C_{18}H_{15}NO_2$; MS (ESI): m/z - Found 277.11 [M+ H]⁺; Calculated 277.32 [M+ H]⁺; M.P. (°C) 153–156; Elemental Analyses (%) – Found C, 78.02; H, 6.14; N, 5.75; Calculated C, 77.96; H, 5.45; N, 5.05; IR - (cm⁻¹): 3125 (N–OH), 1623 (C=O). ¹H NMR (400 MHz, CD₃OD) δ 2.66 (s, 1H), 4.63 (s, 1H), 3.33 (s, 5H), 7.91 (d, 6H), 8.41 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 130.26, 129.63, 128.41, 126.76, 125.75, 123.52, 48.47, 48.26, 48.05, 47.84, 47.63, 47.41, 47.20, 39.48, 39.27, 39.06, 38.85, 38.64, 38.22, 18.95.

2.2 | Instruments

UV-visible absorption spectra were obtained using a Cary-50 UVvisible spectrophotometer (Varian) with a cuvette of 1.0 cm path length. A Cary Eclipse fluorescence spectrophotometer (Agilent Technologies) equipped with a xenon flash lamp and a 1.0 cm quartz cell and containing a thermostat cell holder for maintaining five different temperatures (viz. 298, 303, 308, 313 or 318 K) was used to measure the emission spectra. CD spectra were recorded on a Jasco-J-815-CD spectropolarimeter using a 1 cm quartz cuvette at room temperature. To avoid aggregation and any re-absorption effect, the concentrations of all solutions were maintained in the micromolar range.^[25] A Nicolet iS10 spectrometer (Thermo Fisher) was used to obtain the DRS-FTIR WILEY-LUMINESCENCE

spectra using KBr pellets. Cyclic voltammetry measurement was carried out on an electrochemical system KEITHLEY A Tektronix Company 2460 Sourcemetre® instrument. A Eutech Oakton digital pH meter with a combined glass-calomel electrode was used to maintain the pH of the solutions.

2.3 | BSA binding studies2.3.1. UV-visible method

A UV-visible spectrophotometer was used to study the HAs-BSA interaction and the BSA concentration was determined using standard molar absorption at 280 nm. The UV-visible spectra of BSA solutions in the absence or presence of compound **1** and compound **2** were measured using a 1 cm quartz cell at room temperature. Wavelength was set from 200 to 400 nm, as BSA shows absorption spectra at 280 nm. BSA concentration was fixed at 4.47×10^{-7} M, while the HAs concentration was varied from 0.00 to 13.33×10^{-5} M (0.00, 1.67, 3.33, 5.00, 6.67, 8.33, 10.00, 11.67, or 13.33×10^{-5} M).^[26] All solutions were prepared in CP buffer and were adjusted to pH 7.4 using a Eutech Oakton digital pH meter.^[27,28]

2.3.1 | Fluorescence quenching method

The protein-binding parameter was evaluated using tryptophan fluorescence quenching experiments, which confirmed the binding of HAs to BSA. The quenching mechanism occurred either due to an inner filter effect and by static or dynamic quenching. The inner filter effect was rectified by applying Equation (1):

$$F_{corrected} = F_{observed} \times 10^{[A_{ex} + A_{em}]/2}$$
(1)

where, $F_{corrected}$ and $F_{observed}$ are corrected and observed fluorescence intensities. A_{ex} and A_{em} are the absorbance values at the excitation and emission wavelengths. The corrected fluorescence values were used to calculate the Stern–Volmer quenching constant (K_{sv}). The plot of ratio of fluorescence intensities versus concentration of HAs (Stern–Volmer plot) after correction for inner filter effect produced a straight line; this result confirmed that only one type of quenching, i.e. either static or dynamic quenching, was present.^[29] Dynamic quenching occurs when there is molecular collision between quencher and fluorophore in the excited state, such that photon emission does not happen when the two reach ground state. Static quenching however occurs following formation of a non-fluorescent complex between fluorophore and quencher.^[30]

An emission experiment using HAs–BSA solutions at five different temperatures (viz. 298, 303, 308, 313 or 318 K) was performed using a Cary Varian Fluorescence spectrophotometer. During the measurement, the emission wavelength ranged from 300 to 550 nm while the excitation wavelength was set at 295 nm with excitation and emission slits at 5 nm and 5 nm respectively. Mixed solutions were prepared by adding an appropriate volume of HAs and BSA to the CP buffer, with HAs concentration varied from 0.00 to 13.33×10^{-5} M (0.00, 1.67, 3.33, 5.00, 6.67, 8.33, 10.00, 11.67, 13.33 $\times 10^{-5}$ M) and the BSA concentration set at 4.47 $\times 10^{-7}$ M.^[31] Quenching

fluorescence spectra for BSA were observed at 340 nm. The quenching study^[32] was analysed using the following Stern–Volmer equation, Equation (2):

$$F_0/F = 1 + K_{sv}[Q] = 1 + K_q \tau_0[Q]$$
 (2)

where, F_0 and F represent the fluorescence intensities in the absence or presence of quencher and [Q] is the concentration of quencher (HAs) in solution. K_q is the bimolecular quenching rate constant, K_{sv} is the Stern–Volmer quenching constant, τ_0 is the average fluorescence lifetime of the protein and was 6.2×10^{-9} s for BSA.^[33]

Interaction of BSA with HAs was also affirmed by the binding constant (K_b) and number of binding sites (n). Constant values were obtained from the plot of log[($F_0 - F$) / F] against log[Q] at five different temperatures (viz. 298, 303, 308, 313 or 318 K) using the following equation, Equation (3):

$$\log[(F_0 - F)/F] = \log K_b + n \log[Q]$$
(3)

where, K_b is the binding constant and n is number of binding sites. The van 't Hoff equation, Equation (4), was used to calculate ΔH and ΔS values, while ΔG was determined using Equation (5):

$$\log K_b = -\frac{\Delta H}{2.303RT} + \frac{\Delta S}{2.303R} \tag{4}$$

$$\Delta G = \Delta H - T \Delta S \tag{5}$$

where, K_b is the binding constant, R is the gas constant and T is the absolute temperature of the solution. K_b values were calculated at five different temperatures (viz. 298, 303, 308, 313 or 318 K) using fluorescence spectroscopy.

2.3.2 | Determination of fluorescence quantum efficiencies

Energy transfer from BSA to HAs molecules during the HAs-protein interaction was measured using fluorescence spectroscopy^[34] at an excitation wavelength at 295 nm and emission wavelengths from 300 to 550 nm with a band slit width of 5 nm. The ratio of quantum efficiencies of bound and free protein was measured to calculate the energy of fluorescence intensity during the HAs-protein interaction. Energy transfer from protein to ligand upon complex formation was the measurement of the quantum efficiency of the protein-binding ligand, and was determined from the ratio of quantum efficiency of ligand protein (q_b) to the quantum efficiency of the free ligand (q_f),^[35] as given in the following equation, Equation (6),

$$Q = \frac{q_b}{q_f} = \frac{l_b}{l_f} \times \frac{\varepsilon_f}{\varepsilon_b}$$
(6)

where, I_b , I_f , ϵ_f and ϵ_b represent the intensity and molar extinction coefficients of the free and bound HAs compound to protein.

2.3.3 | Drug displacement experiment

Binding of BSA with HAs was confirmed using displacement studies and fluorescence spectroscopy. Warfarin (WF) and ibuprofen (IB) were the Sudlow's site I and Sudlow's site II markers for BSA. The displacement reactions were performed by saturating BSA (4.47×10^{-7} M) with site markers to attain a ratio of BSA to the site marker of 1:2. The emission spectra of the BSA-site marker complexes were recorded from 300 nm to 550 nm with an excitation wavelength of 295 nm, followed by the addition of increasing concentrations of HAs from 0.00 to 13.33×10^{-5} M (0.00, 1.67, 3.33, 5.00, 6.67, 8.33, 10.00, 11.67, and 13.33×10^{-5} M).

2.3.4 | Förster resonance energy transfer

According to the Förster's theory^[36], energy transfer efficiency and critical distance are calculated when the normalized absorption spectrum of HAs is overlapped with the normalized emission spectrum of BSA. Förster non-radiative energy transfer (FRET) occurs when fluorescence is produced by the donor molecule during the binding process. In addition to this, appreciable protein interaction was observed when the overlap distance between the absorption spectra of the acceptor and the fluorescence emission spectrum of HAs was recorded between 200 nm to 400 nm and the fluorescence emission spectrum was set from 300 nm to 550 nm with excitation at 295 nm. FRET is an original way to study structure, conformation and spatial distribution of complex proteins, as well as to evaluate the distance between donor and acceptor molecules. Energy transfer efficiency (E) was evaluated using the following equation, Equation (7):

$$E = 1 - F/F_0 = R_o^6 / (R_o^6 + r^6)$$
(7)

where, F_0 and F are the fluorescence intensities of BSA in the absence or presence of HAs. Average distance between the donor (BSA) and the acceptor (HAs) is r and R_0 is the Förster critical energy transfer distance, which was calculated using Equation (8):

$$R_o^{\ 6} = 8.8 \times 10^{-25} \ k^2 \ N^{-4} \ \phi \ J \tag{8}$$

where, k^2 is the spatial orientation of the dipole, $k^2 = 2/3$. N is the refractive index of medium, N = 1.36. Φ is the fluorescence quantum yield of the donor (for BSA, $\Phi = 0.15$). J is the overlap integral of the fluorescence emission spectrum of the donor and the absorption spectrum of the acceptor, which can be calculated using the Equation (9):

$$J = \frac{\int_{0}^{\infty} F(\lambda) \epsilon(\lambda) \lambda^{4} \Delta \lambda}{\int_{0}^{\infty} F(\lambda) \Delta \lambda}$$
(9)

where, λ is the wavelength of absorbance of HAs and fluorescence intensity of the BSA. F(λ) is the fluorescence intensity of BSA and $\epsilon(\lambda)$ is the molar absorption of the HAs at wavelength λ .

2.3.5 | Synchronous fluorescence

Synchronous fluorescence measurement was carried out using parallel scanning of the excitation and emission monochromators. Microenvironments around the tyrosine and tryptophan moieties of the protein molecule were altered; this can be demonstrated by setting the wavelength interval ($\Delta\lambda$) at 15 or 60 nm.^[39] A titration of BSA (4.47 × 10⁻⁷ M) was performed by varying the concentration of HAs (0.00–13.33 × 10⁻⁵ M).

2.3.6 | Continuous variation analysis (Job's plot)

Binding stoichiometric analysis of the HAs–BSA interaction was performed using Job's plot, commonly known as continuous variation analysis.^[40] Studies were conducted by recording the emission spectra of a series of solutions at 298 K. During the analysis, readings were taken by varying the BSA and HAs concentrations, but keeping the overall concentration of the solution constant. The fluorescence emission intensity difference (Δ F), i.e. the emission spectra of BSA in the absence or presence of HAs were plotted as a function of mole fraction of HAs. The Job's plot break point gives information on mole fraction of HAs binding stoichiometry for BSA. The binding stoichiometry was evaluated using Equation (10):

Binding stoichiometry =
$$(1 - \chi_{HA_s})/\chi_{HA_s}$$
 (10)

where, χ_{HA_s} is the mole fraction of HAs.

2.3.7 | Circular dichroism measurements

A JASCO-J 820 spectro-polarimeter coupled to a microcomputer equipped with a Peltier-type temperature-controlled Neslab RTE-110 circulating water bath at 298.15 K and a guartz cell with a path length of 0.1 cm was used for far-UV CD spectral measurement (200-250 nm) of BSA in the absence or presence of HAs. The instrument was calibrated using D-10-camphorsulfonic acid. All isothermal CD analyses for each spectrum were performed over an average of two scans and the scan speed was set at 50 nm min⁻¹. Spectra were recorded using a data pitch of 0.1 nm and a response time of 2 s. In the far-UV CD range, the spectra of BSA in setting the absence or presence of HAs were recorded from 190 nm to 250 nm. In total, 25 convolution spectral widths were smoothed using the Savitzky-Golav method.^[41] Far-UV CD spectra of either free BSA or coupled with HAs were measured in the molar ratios 1:0 and 1:2. In the spectra, the presence of two negative peaks at 208 and 222 nm showed the α -helical content of the protein.^[42] The per cent α -helical and β -sheet contents of BSA were calculated using K₂D₂ software^[43] at 200 to 250 nm using the spectral data obtained from the CD technique.

2.3.8 | Cvclic voltammetric measurement

WILEY-LUMINESCENCE-

To compliment previously used methods such as UV-visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry (CV) was carried out to measure the interaction of HAs with BSA. Electrochemical methods were applied to measure the binding strength and mode of action during the drug-biomolecules interaction.^[44] Electrochemical reactions between BSA (4.47×10^{-7} M) and HAs from 0.00 to 8.33×10^{-5} M (0.00, 1.67, 3.33, 5.00, 6.67, 8.33 $\times 10^{-5}$ M) were investigated using CV. These interactions were studied using a threeelectrode cell with a platinum electrode as a counter electrode, a gold electrode was used as the working electrode and a silver electrode was used as the reference electrode.^[45] The electrochemical behaviour of BSA in the absence or presence of HAs was studied using CV, in which CP buffer and NaCl were used as the electrolytes. Cathodic and anodic peaks were observed between the potential range from -0.75 to +0.75 to -0.75 V with a scan rate of 200 mV s⁻¹.

2.3.9 | Molecular docking studies

Molecular docking plays a key role in drug design, as docking determines the mode of action, mechanism and binding ability between drug and protein. In this study, the binding energy of HAs was calculated by making the structure flexible using an extensive molecular mechanism. Intermolecular interactions of HAs with BSA were determined using molecular docking, Autodock 4.2 software and Autodock tools (ADT) and a Lamarckian genetic algorithm.^[46] The 3D crystal structure of BSA (PDB id: 4F5S) was obtained from Brookhaven PDB and the PDB file for the HAs was produced using Chem3DUltra10.0 software. BSA was assigned with partial Kollman charges after the removal of water molecules and ions and therefore the addition of all hydrogen atoms. Solvent molecules were not considered during docking and the protein molecule was set rigid. The grid size was taken as 116, 116 and 116 Å along the x-, y- and z-axes, respectively, with a grid spacing of 0.494 Å. Autodock parameters were a 150 GA population size, and 2 500 000 was set as the maximum number of energy evolutions. Residues involved in binding were visualized and identified using Discovery Studio 3.5 software.

2.3.10 | DRS-FTIR spectroscopic measurement

At room temperature, the diffuse reflectance spectroscopy-Fourier transform infrared (DRS-FTIR) spectra of BSA in the presence or absence of HAs was measured using a Nicolet iS10 FTIR spectrophotometer (Thermo Fisher) with a range between 400 and 4000 cm⁻¹. Absorbance mode with a resolution of 4 cm⁻¹ was used to measure spectral scans. The number of scans per sample was set to 32. For the DRS-FTIR scan, protein and the compound HAs with a varying molar ratio of 1/0, 1/1 and 1/2 was delivered over 0.1 g of preweighed finely ground IR grade KBr. Any water aberration was removed by drying with potassium bromide (KBr) at 100°C for 5-10 min, before delivering the HAs-BSA complex. To minimize any atmosphere interference, the FTIR spectrometer was purged for

30 min with >99.99% analytical grade nitrogen gas using an external purge kit (iS10 iZ10 model, Thermo Fisher Scientific). After filling the dried KBr over the sample cup, the analyte was carefully delivered over it. A deuterated, L-alanine-doped triglycine sulphate (DLaTGS) detector and a diffuse reflectance accessory with XT/KBr beam splitter were used. Spectral scaling was automatically performed using OMNIC 9.1 software, and quantification of the resultant absorption was performed. After taking all the required precautions, seven replicated measurements were conducted for 10 μ g ml⁻¹ of the analyte.

2.3.11 | DPPH-scavenging activity measurement

The 2,2'-diphenyl-1-picrylhydrazyl free radical (DPPH) method used to examine the radical-scavenging activity of HAs.^[47,48] The following experiment was conducted: DPPH (only) was taken; DPPH was added to BSA (4.47×10^{-7} M); DPPH was added to HAs (1.67×10^{-5} M); DPPH was added to BSA (4.47×10^{-7} M) and HAs (1.67×10^{-5} M); DPPH was added to BSA (4.47×10^{-7} M) and HAs (3.33×10^{-5} M); DPPH was added to BSA (4.47×10^{-7} M) and HAs (3.33×10^{-5} M); DPPH was added to BSA (4.47×10^{-7} M) and HAs (5.00×10^{-5} M); DPPH was added to BSA (4.47×10^{-7} M) and HAs (5.00×10^{-5} M); DPPH was added to BSA (4.47×10^{-7} M) and HAs (5.00×10^{-5} M); DPPH was added to BSA (4.47×10^{-7} M) and HAs (5.00×10^{-5} M). After 30 min incubation at room temperature, the absorbance measurement was set to 517 nm. For the negative control, ethanol was used.

3 | RESULTS AND DISCUSSION

3.1 | UV-visible spectroscopy

Protein-drug interactions usually lead to conformational changes in proteins that are monitored using UV-visible absorption spectrophotometry, therefore this technique was chosen as a reliable tool to study morphological changes in the secondary structure of BSA.^[49] UV-visible absorption is an easy but productive method for studying complex formation during HAs-BSA interaction. BSA exhibits absorption bands near 280 nm ($\pi \rightarrow \pi$? transitions) due to the presence of aromatic rings in amino acids residues such as tryptophan (Trp),

tyrosine (Tyr) and phenylalanine (Phe).^[50] Aromatic residues are receptive towards changes in microenvironments, therefore giving an effective absorption spectra at 280 nm. Our finding implied that HAs interacted with BSA using a non-covalent interaction, most likely to be hydrogen bonding because of the molecular topology of the peptide ligand frame of HAs. UV-visible spectra were recorded while keeping the BSA concentration constant but varying the concentration of HAs, as shown in Figure 2(a) and Figure 2(b) for compound 1 and compound 2, respectively. Absorption spectra of BSA showed a characteristic peak at 280 nm, in agreement with a previous report.^[51] With increase in HAs concentration, an increase in spectral intensity (hyperchromic shift) was observed, along with a blue shift at 280 nm. When increasing the amount of HAs, the BSA molecule was denatured, causing the unveiling of the main chain and resulting in a greater possibility for approaching water molecules for amide moleties, especially, present in the hydrophobic pocket of the protein. Therefore, the observed blue shift was due to the formation of a complex between BSA and HAs, probably leading to conformational changes in BSA.^[5] The enhanced absorption intensity also implied an extended protein strand for BSA upon HAs-BSA interaction and, furthermore, more aromatic acid residues were found to be elongated in an aqueous environment.^[52] Trp-212, which is naturally buried in a hydrophobic pocket, was uncovered to a certain degree when placed in an aqueous environment.^[53] The above result demonstrated binding, destruction of the tertiary structure of BSA and change in the microenvironment around three aromatic amino acid residues.^[54]

3.2 | Fluorescence spectroscopy

3.2.1 | Quenching study

Fluorescence quenching is considered one of the most sensitive methods to study interaction of the drugs with protein and is sensitive towards microenvironment changes. Proteins contain endogenous fluorophores and the interaction of these fluorophore with a drug results in an alteration in quantum yield (usually quenching of fluorescence), which is used to determine drug affinity (in this case

FIGURE 2 Absorption spectra of BSA with different concentrations of (a) compound 1 and (b) compound 2

AGRAWAL ET AL

HAs). Emission intensity at 340 nm was observed when the BSA solution was excited at 295 nm. But addition of HAs to the BSA solution resulted in a gradual decrease in emission intensity with a slight blue shift, represented in Figure 3(a) and Figure 3(b) for compound **1** and compound **2**, respectively. A decrease in emission intensity (or quenching of fluorescence) revealed the interaction of tryptophan residues inside BSA with HAs molecules.^[13]

Stern-Volmer plots of F0/F versus [Q] at five different temperatures (viz. 298, 303, 308, 313 or 318 K) are shown in Figure 4(a) and Figure 4(b) for compound 1 and compound 2, respectively. The values of the Stern-Volmer quenching constant, K_{sv} and bimolecular rate constant, and K_a at five different temperatures (viz. 298, 303, 308, 313 or 318 K) for the compounds are listed in Table 1. The results revealed that, with temperature, the Stern-Volmer quenching constant K_{sv} was inversely correlated, indicating fluorescence quenching between HAs and BSA was of the static type.^[55] The type of quenching mechanism (dynamic or static) prevailing during this interaction was also verified by comparing the bimolecular quenching rate constant (K_a), evaluated using the Stern-Volmer equation, from the reported values.^[56] For dynamic quenching, the K_q value must be less than 2.0 × 10¹⁰ L mol⁻¹ s¹. In the present study, the K_a values for compound 1 and compound 2 were greater than 2.0×10^{10} L mol⁻¹ s⁻¹, which confirms that a static-type quenching mechanism was present during HAs-BSA interaction. The y-axis intercept obtained by plotting $\log(F_0/F)/F$ versus $\log[Q]$ demonstrated the binding constant (K_b) and the slope gave the number of binding sites (n). These values are listed in Table 2 and indicated that, with increase in temperature of the solution, the K_b value and n value decreased, suggesting that the HAs-BSA complex was more stable at physiological temperatures compared with higher temperatures. The decrease in K_{h} values with increasing temperature also indicated the occurrence of a static guenching mechanism^[10] during HAs-BSA interaction, shown in Figure 5(a) and Figure 5(b) for compound 1 and compound 2, respectively. This result showed that change in temperature decreased the stability of the complex as well as the number of binding sites.^[57] In addition, n was found to be 0.5 for compound 1 and 1.0 for compound 2, which indicated that two molecules of compound 1 associated with BSA, while only one association site existed between BSA and compound 2.^[58]

3.2.2 | Thermodynamic parameters and binding force

The force acting between biomolecules and small molecular ligands could be any non-covalent force including hydrogen bonds, van der Waals' forces, hydrophobic forces and electrostatic interactions.^[59,60] To determine the type of force existing during the HAs–BSA interaction, temperature-dependent experiments were performed. By evaluating thermodynamic parameters such enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG), forces acting during HAs–BSA interactions could be determined.

The plot of $logK_b$ versus 1/T yielded a straight line, as shown in Figure 6(a) and Figure 6(b) for compound 1 and compound 2, respectively. ΔH and ΔS values were calculated according to the slope and intercept values from Equation (5) and are represented in Table 3. Gibb's free energy (ΔG) was evaluated from enthalpy and entropy changes from Equation (5) and is reported in Table 3. Positive values for ΔH and ΔS revealed that hydrophobic interactions occurred between the drug and biomolecules.^[61] By contrast, negative values for ΔH and ΔS suggested that the binding process was enthalpy driven, therefore hydrogen bonding and van der Waals' forces were involved during the interaction.^[13,62] By measurement, ΔH and ΔS values obtained for compound 1 were -131.38 kJ mol⁻¹ and -385.37 J mol ⁻¹ K⁻¹ respectively; similarly ΔH and ΔS values obtained for compound 2 were -187.34 kJ mol⁻¹ and -532.76 J mol⁻¹ K⁻¹ respectively. This finding implied that compound 1 and compound 2 bound to BSA through hydrogen bonds and van der Waals' forces.

3.2.3 | Quantum efficiency

Strong binding between HAs and BSA was confirmed using the results of quantum efficiency (Q). An exponential plot was obtained between the absorbance and inverse of protein concentrations by which quantum efficiency values greater than one were determined and indicated an increase in energy for the bound ligand. A quantum efficiency greater than 1 during HAs–BSA interaction was due to shielding of HAs from the binding site of the protein, therefore protecting it from quenching by the solvent.

FIGURE 3 Fluorescence emission spectra of BSA with different concentrations of (a) compound 1 and (b) compound 2

8 WILEY-LUMINESCENCE-

FIGURE 4 Linear fit plot related to the Stern–Volmer constant between F_0/F versus concentration [Q] at five different temperatures (viz. 298, 303, 308, 313 or 318 K) of (a) compound **1** and (b) compound **2**

TABLE 1 Stern–Volmer quenching constant (K_{sv}) , quenching constant (K_q) correlation coefficient (R²) and standard deviation (SD) of HAs–BSA system at five different temperatures (viz. 298, 303, 308, 313 or 318 K)

HAs	Temperature (K)	K₅v (L mol ^{−1})	K _q (L mol ⁻¹ s ⁻¹)	R ²	SD
1	298 303 308 313 318	$7.28 \times 10^{4} 4.94 \times 10^{4} 3.27 \times 10^{4} 2.52 \times 10^{4} 2.04 \times 10^{4}$	$\begin{array}{c} 1.30 \times \ 10^{13} \\ 8.83 \times \ 10^{12} \\ 5.84 \times \ 10^{12} \\ 4.51 \times \ 10^{12} \\ 3.65 \times \ 10^{12} \end{array}$	0.92 0.86 0.85 0.82 0.80	0.02 0.03 0.05 0.06 0.02
2	298 303 308 313 318	3.35×10^4 2.66×10^4 1.66×10^4 1.03×10^4 6.31×10^3	$5.41 \times 10^{12} \\ 4.29 \times 10^{12} \\ 2.68 \times 10^{12} \\ 1.66 \times 10^{12} \\ 1.02 \times 10^{12} \end{cases}$	0.96 0.98 0.86 0.98 0.98	0.02 0.02 0.03 0.03 0.02

TABLE 2 Associative binding constants (K_b), number of binding sites (n), correlation coefficient (R^2) and standard deviation (SD) of HAs–BSA systems at five different temperatures (viz. 298, 303, 308, 313 or 318 K)

HAs	Temperature (K)	K _b (L mol ^{−1})	n	R ²	SD
1	298 303 308 313 318	$\begin{array}{l} 9.55 \times 10^2 \\ 3.02 \times 10^2 \\ 1.02 \times 10^2 \\ 5.62 \times 10^1 \\ 3.55 \times 10^1 \end{array}$	0.51 0.41 0.33 0.29 0.26	0.98 0.98 0.99 0.99 0.99	0.02 0.05 0.05 0.04 0.04
2	298 303 308 313 318	$7.59 \times 10^4 5.13 \times 10^4 6.17 \times 10^3 2.63 \times 10^3 8.71 \times 10^2$	1.12 1.10 0.92 0.84 0.77	0.99 0.99 0.99 0.99 0.99	0.02 0.02 0.03 0.05 0.06

3.2.4 | Site marker competitive binding

BSA is a globular protein comprised of three homologous domains (I, II, III), which are further divided into subdomains A and B. Warfarin (WF) acts as a site marker of subdomain IIA (Sudlow's site I) and ibuprofen (IB) acts as a site marker of subdomain IIIA (Sudlow's site II).^[63,64] Site displacement experiments were performed to study the binding process of HAs to protein molecules using different site markers as in WF and IB for site I and site II, respectively.^[65] Displacement experiments were carried out by recording fluorescence intensity at a constant concentration of BSA (4.47 × 10⁻⁷ M) saturated with WF/IB and increasing the concentrations of HAs. The binding constant (K_b), Stern–Volmer quenching constant (K_{sv}), bimolecular quenching constant (K_q) and number of binding sites (n) were calculated from Equations (2) and (3).

Stern-Volmer quenching constant (K_{sv}) for BSA-HAs and BSA-HAs-WF/IB^[66] at 298.15 K was monitored and listed in Table 4. Fluorescence spectra of BSA and warfarin or ibuprofen for compound 1 are shown in Figure 7(a) and Figure 7(b), while for compound 2 these are shown in Figure 8(a) and Figure 8(b). Ligands effectively bind at the binding site on BSA, which has the least Stern-Volmer constant value of their site markers.^[9] Fluorescence quenching calculated for the ternary system of compound 1 was $K_{BSA-WF-1} = 3.10 \times 10^4 \text{ L mol}^{-1}$ and $K_{BSA-IB-1} = 5.16 \times 10^4 \text{ L mol}^{-1}$. Similarly, fluorescence quenching measured for the ternary system of compound 2 was $K_{BSA-WF-2} = 1.26 \times 10^4 \text{ L mol}^{-1}$ and $K_{BSA-IB-1}$ $_2$ = 1.49 × 10⁴ L mol⁻¹. From the data it was evident that the presence of ibuprofen did not affect the fluorescence quenching ability of compound 1 and compound 2, therefore signifying that HAs does not compete with ibuprofen and therefore Sudlow's site II. By contrast, the fluorescence quenching behaviour for compound 1 and compound 2 was the least in the presence of warfarin. This finding confirms that compound 1 and compound 2 may have binding sites similar to that of warfarin. These drug displacement experiments in the presence of site markers confirmed that HAs may bind to subdomain IIA (Sudlow's site I) in the BSA molecule.

FIGURE 5 Linear fit plot related to the Stern–Volmer constant between $log[(F_0 - F)/F]$ versus concentration log[Q] at five different temperatures (viz. 298, 303, 308, 313 or 318 K) of (a) compound **1** and (b) compound **2**

FIGURE 6 Linear fit plot obtained from the fluorescence emission spectra of HAs-BSA interaction between 1/T vs. logK_b of (a) compound **1** and (b) compound **2**

TABLE 3 Relative thermodynamic parameters, i.e. Gibb's free energy (ΔG), enthalpy change (ΔH) and entropy change (ΔS) in the HAs–BSA system

HAs	Temperature (K)	∆G (kJ mol ^{−1})	∆H (kJ mol ^{−1})	∆S (J mol ⁻¹ K ⁻¹)
1	298 303 308 313 318	-16.59 -14.67 -12.74 -10.81 -8.89	-131.38	-385.37
2	298 303 308 313 318	-28.43 -25.76 -23.10 -20.43 -17.77	-187.34	-532.76

TABLE 4 For the set of HAs: Stern–Volmer constant (K_{sv}), quenching constant (K_q), correlation coefficient (R^2) and standard deviation (SD) of BSA by compound **1** (HAs-1) and compound **2** (HAs-2) in the absence or presence of site markers

9

HAs	Site markers	K _{sv} (L mol ^{−1})	<i>К_q</i> (L mol ⁻¹ s ⁻¹)	R ²	SD
1	1 only WF IB	7.28×10^4 3.10×10^4 5.16×10^4	1.30×10^{13} 5.01×10^{12} 8.32×10^{12}	0.92 0.85 0.95	0.02 0.02 0.02
2	2 only WF IB	3.35×10^4 1.26×10^4 1.49×10^4	$\begin{array}{l} 5.41\times10^{12}\\ 2.03\times10^{12}\\ 2.41\times10^{12} \end{array}$	0.96 0.96 0.99	0.02 0.01 0.01

3.2.5 | Förster resonance energy transfer (FRET)

Förster resonance energy transfer (FRET) occurs during the interaction between two molecules and hence the efficiency of energy transfer and the distance between donor (BSA) and acceptor (HAs) could be obtained. FRET occurs only when the absorption spectra of the acceptor (HAs) overlap with the emission spectra of the donor (BSA). Transfer of energy was successful when the quantum yield of the donor molecule was high, when both the molecules had a proper orientated transition dipole moment and when the distance between donor-to-acceptor molecules was less than 8 nm.^[37] A distance between donor and acceptor molecule of less than 8 nm also signified that fluorescence quenching during drug-protein interaction was of the static type.^[67,68] FRET parameters such as overlap integral (J) obtained from Equation (9), energy transfer (E) obtained from Equation (8) and

FIGURE 7 Site displacement study of compound 1-BSA complex in the presence of (a) Warfarin and (b) Ibuprofen

FIGURE 8 Site displacement study of compound 2-BSA complex in the presence of (a) Warfarin and (b) Ibuprofen

the distance between HAs and BSA (r) evaluated from Equation (7) are listed in Table 5. The average distance, r and critical distance, R_o calculated for BSA-compound **1** interaction was 2.36 nm and 2.85 nm, whereas for BSA-compound **2** interaction was 3.35 nm and 2.85 nm. Therefore, the binding distances for both the BSA-HAs systems were less than 8 nm, which confirmed a greater energy transfer possibility between BSA and HAs and their mechanism as static type.

3.2.6 | Synchronous fluorescence spectroscopy

Synchronous fluorescence emission experiment provides information about conformational changes in microenvironments around tyrosine (Tyr) and tryptophan (Trp) residue in BSA upon ligand interaction.^[69]

TABLE 5FRET data obtained from spectral overlap of absorptionspectra of HAs and emission spectra of BSA

HAs	Spectral overlap, J (L cm ³ mol ⁻¹)	Critical distance, R _o (nm)	Energy transfer efficiency (E)	r (nm)
1	5.88 × 10 ⁻¹⁴	2.85	0.79	2.36
2	5.88×10^{-14}	2.85	0.26	3.35

For Tyr and Trp residues, the D-value ($\Delta\lambda$) between the excitation and emission wavelengths was set at 15 nm and 60 nm respectively.^[70] In this technique, changes in the polarity around the microenvironments of amino acid residues present in the protein were inferred by the shift in λ_{em-max} of emission spectra.^[71] Blue and red shifts in λ_{em-max} manifested as an increase in hydrophobicity around the fluorophore.^[72] When synchronous spectra were set at $\Delta\lambda$ = 15 nm, slight blue and red shifts in the emission spectra of the HAs-BSA complex were observed with increasing concentrations of HAs, as summarized in Supporting Information Figure S7(b) and Figure S8(b) for compound 1 and compound 2, respectively. This result suggested that the conformation around the Tyr residues altered significantly upon interaction with BSA for compound 1 and compound 2. Conversely when $\Delta\lambda$ was set at 60 nm, a slight blue shift was observed in the emission maximum of BSA for compound 1 and compound 2, as shown in Figure S7(a) and Figure S8(a), respectively, concluding that the microenvironments around the Trp residue were markedly altered. Therefore, HAs-induced conformational changes inferred that microenvironments around both the Trp and Tyr moieties were markedly perturbed, therefore indicating HAs-BSA complex formation.^[73] This result implied that compound 1 and compound 2 caused microenvironment changes around both Trp and Tyr residues. Furthermore, the fluorescence intensity decreased regularly with increasing

WILEY-LUMINESCENC

concentrations of compound **1** (Figure S7a and Figure S7b) and compound **2** (Figure S8a and Figure S8b) in both systems and reinforced the occurrence of fluorescence quenching.

3.2.7 | Binding stoichiometry

Binding stoichiometry for the HAs-BSA interaction was affirmed by Job's continuous variation method. During analysis, readings were taken by varying the concentrations of BSA and HAs, but the overall concentration of the solution was kept constant.^[74] Fluorescence intensity differences were plotted against the mole fraction of the HAs, as shown in Figure S9(a) and Figure S9(b) for compound 1 and compound 2. respectively. Job's plot break point gives information about the mole fraction of HAs and binding stoichiometry for BSA. The maximum fluorescence intensity differences for compound 1 and compound 2 were observed to be 0.7 and 0.5 mole fractions of hydroxamic acid as evident in Figure S9(a) and Figure S9(b), respectively. This result implied that the stoichiometric ratio of BSA:compound 1 was 1:2 and of BSA:compound 2 was 1:1. Therefore, the binding stoichiometry obtained from Job's plot showed a correlation with the number of binding sites obtained by fluorescence studies for compound 1 and compound 2.

3.3 | Effect of binding of HAs on the ellipticity changes in BSA

Far-UV CD spectroscopy is used for qualitative, as well as quantitative, determination of the secondary structure of protein molecules.^[75,76] Therefore, CD measurement was performed to investigate the effect of HAs on the secondary structure of protein. CD spectra of BSA manifested two negative peaks at 208 nm and 222 nm that correlated with the n to π^* and π to π^* conversion of the peptide bond of an α -helix.^[77] Far-UV CD measurements of BSA in the absence or presence of HAs were performed at molar ratios of 1:0 and 1:2 shown in Figure 9(a) and Figure 9(b) for compound **1** and compound **2**, respectively. Upon interaction of BSA with compound **1**, the α -helical pattern was identical to that of basic BSA, which implied that, in the BSA-compound **1** complex, the BSA α -helix was not changed after interaction with compound **1**. However, for compound **2**, the per cent α -helical content of the BSA-compound **2** complex was enhanced from 67.45 to 77.30 in comparison with the basic BSA molecule. The per cent α -helixes and β -sheets for compound **1** and compound **2** were calculated using K₂D₂ software and are summarized in Table 6. These results suggest that compound **1** maintains the secondary structure of BSA, whereas a slight change in the secondary structure of BSA was observed during binding to compound **2**.^[78]

3.4 | Cyclic voltammetric measurement

The binding interaction of BSA in the presence of HAs was studied using CV at a gold electrode.^[79] In the present study, for BSA, the anodic peak appeared at -0.23 V versus the corresponding peak current at -4.5×10^{-6} A, while the cathodic peak appeared at 0.00 V with the corresponding peak current at 1×10^{-6} A. Similarly, for compound **1**, the anodic peak appeared at -0.25 V versus corresponding peak current at -7.5×10^{-6} A, while the cathodic peak appeared at 0.36 V having corresponding peak current at 3×10^{-6} A. For compound **2**, the anodic peak appeared at -0.25 V versus corresponding peak current at -6.8×10^{-6} A, while the cathodic peak appeared at 0.36 V having a corresponding peak current at 3.5×10^{-6} A. The peak current decreased with increasing concentrations of compound **1**, while the peak current increased with increasing concentrations of

TABLE 6 α -Helical and β -sheet content during the interaction of BSA with compound **1** and compound **2** (viz. molar ratios of 1:0 and 1:2)

HAs	Molar ratio	% α-helix	% β-sheet
1	1:0	67.45	3.24
	1:2	67.45	3.24
2	1:0	67.45	3.24
	1:2	77.30	1.67

FIGURE 9 Secondary structural rearrangements: far-UV CD spectra of BSA only at molar ratios (1:0) and BSA-HAs at molar ratio (1:2) for (a) compound 1 and (b) compound 2

compound **2**, as shown in Figure 10(a) and Figure 10(b), respectively. These results revealed that a complex was formed during HAs and BSA interaction.^[80]

3.5 | Molecular docking

Molecular docking is one of the most potent tools in drug design, significantly used to determine the binding site, binding energy and orientation of the drug molecule. Use of the Autodock 4.2 program enabled evaluation of the possible conformations during HAs-BSA interaction.^[81] *In silico* modelling studies not only measure the binding site on BSA, but also the binding energy during the molecular interaction. In this study, extensive molecular mechanics were used to search a thermodynamically stable model of flexible HAs from which the binding energy was calculated. HAs bonds were found to be flexible as detected by root in the AutoDock Tool. The flexibility in the structure of the ligand molecule allowed confirmation of the binding site in the receptor molecule. The nine best conformations of the binding sites yielded using AutoDock Vina were arranged in increasing order of their binding energies. In the present study, the analysed conforma-

tion with highest binding energies for compound 1 and compound 2 are shown in Figure 11 and Figure 12, respectively. Areas such as subdomains II and III, called as site I and site II, respectively were the principle regions of ligand binding on BSA. Docking results revealed that compound **1** and compound **2** bound within the binding pocket in subdomain IIA of BSA (Figure 11a and Figure 12a). The amino acids in BSA bound via different interactions for compound 1 and compound 2 and are summarized in Figure 11b and Figure 12b, respectively. The HAs-BSA interaction was stabilized using hydrophobic interactions between compound 1 and Cys91, Cys75, Val77, Ala88, Leu80, Arg81 amino acid residues of the protein molecule with a free energy (ΔG) value of -5.25 kcal mol⁻¹, as shown in Figure 11b. Likewise, the HAs-BSA complex was stabilized using hydrogen bonding between compound 2 and Ala88, while hydrophobic interactions between compound 2 and Leu80, Arg81, Cys75, Cys91, Glu92 amino acid residues of BSA occurred with a free energy ΔG value of -3.75 kcal mol⁻¹, as shown in Figure 12b. Analysis of molecular docking results revealed that hydrophobic interaction contributed majorly for the interaction of compound 1 with BSA, and hydrogen bonding and hydrophobic interaction both contributed during interaction between compound 2 and BSA; these are listed in Table 7. Hence,

FIGURE 10 Cyclic voltammetric graph of BSA at 200 mV s⁻¹ scan rates for (a) compound **1** and (b) compound **2**

FIGURE 11 (a) Best conformation of compound 1 docked to BSA, (b) cartoon representation of residues involved in binding of compound 1 to BSA

WILEY-LUMINESCENCE

FIGURE 12 (a) Best conformation of compound 2 docked to BSA, (b) cartoon representation of residues involved in binding of compound 2 to BSA

TABLE 7 Predicted bonds between interacting atoms of different amino acid residues in BSA (PDB ID: 1F4S) and HAs

HAs	Binding site	Amino acid residues	Forces involved	ΔG (kcal mol ^{−1})
1	Site I	Cys91, Cys75, Val77, Ala88, Leu80, Arg81	Hydrophobic interaction	-5.25
2	Site I	Leu80, Arg81, Ala88, Cys75, Cys91, Glu92	H-bonding and hydrophobic interaction	-3.75

an *in silico* approach confirmed our experimental results, showing the binding affinities of compound **1** and compound **2** towards BSA, and therefore binding at subdomain IIA (Sudlow's site I).

3.6 | DRS-FTIR spectroscopy

FTIR is used as an analytical tool to probe the binding processes between biomolecules and drug. This infrared technique is the most important for determining the bonds present in the molecule. Estimation of secondary structure of protein was performed and the hydrogen bond between the carbonyl group and the amide group along was studied. The DRS-FTIR spectra of BSA in the absence or presence of HAs were recorded over the range 400-4000 cm⁻¹. As water molecules were present in the solution preparation and gave a broad peak near 3000-3500 cm⁻¹, these were removed by subtracting the water molecule peak from the HAs-BSA transmittance peak with the help of software. HAs-BSA interactions were determined using the hydrogen bond between the carbonyl group and amide group and were characterized as using two unique bands.^[62] The first band was the amide I band with IR spectra between 1600 and 1700 cm⁻¹ (C=O stretch), the second band was the amide II band with spectra between 1500 and 1600 cm⁻¹ (C-N stretch coupled with a N-H bending mode).^[40] The characteristic protein amide I bands for compound 1 and compound 2 were observed at 1656.00 cm⁻¹ and 1651.00 cm⁻¹, respectively. A red shift was seen with increasing concentrations of HAs 0.00 to 3.33×10^{-5} M (0.00, 1.67, 3.33×10^{-5} M respectively) in the amide I band at 1656.00 cm^{-1} to 1682.00 cm^{-1} for compound 1 and from 1651.00 cm^{-1} to 1678.00 cm^{-1} for compound **2**, shown in Figure 13

and Figure 14, respectively. Similarly, the characteristic peak for the amide II band was observed at 1598.00 cm⁻¹ for compound **1** and 1586.16 cm⁻¹ for compound **2**. Signals for amide II shifted from 1598.00 cm⁻¹ to 1600.00 cm⁻¹ for compound **1** and from 1586.16 cm⁻¹ to 1594.00 cm⁻¹ for compound **2** upon interaction with BSA. From the above data, it could be predicted that the shift in the peak position was due to hydrogen bonding during HAs-BSA interaction.

3.7 | DPPH-scavenging activity measurement

The present investigation was undertaken to study the change in DPPH-scavenging activity during HAs-BSA interaction. The DPPHscavenging method was used to test the ability of a compound to change the deep blue colour of the 2, 2'-diphenyl-1-picrylhydrazyl free radical to a yellow colour. DPPH-scavenging activity using the compound was confirmed by maximum absorbance at 517 nm. Absorbance of DPPH at 517 nm is reduced due to the radical-scavenging activity when DPPH binds to a proton-donating substance, such as an antioxidant.^[82] The effect of DPPH with different concentrations of BSA and compound 1 is shown in Figure S10(a), the absorption spectra of different samples at 517 nm is shown in Figure S10(b) and DPPH absorption at 517 nm in different samples is shown in Figure S10(c). The effect of DPPH with different concentration of BSA and compound 2 is shown in Figure S11(a), the absorption spectra of different samples at 517 nm is shown in Figure S11(b) and the DPPH absorption at 517 nm in different samples is shown in Figure S11(c). The results conveyed that the maximum absorbance value was found for DPPH alone or in presence of pure BSA, pure HAs or

14 WILEY-LUMINESCENCE-

FIGURE 13 FTIR spectra of (a) BSA without compound 1; (b) BSA with 1.67×10^{-5} M of compound 1 and (c) BSA with 3.33×10^{-5} M of compound 1

FIGURE 14 FTIR spectra of (a) BSA without compound **2**; (b) BSA with 1.67×10^{-5} M of compound **2** and (c) BSA with 3.33×10^{-5} M of compound **2**

BSA with HAs derivatives. Pure HAs showed the maximum reduction in DPPH absorption in comparison with the reduction by pure BSA and the mixture of BSA and HAs. This result revealed the high scavenging propensities of compound **1** and compound **2** against DPPH. The antioxidant properties of $HAs^{[83]}$ are mainly due to its propensity to donate its hydrogen atom to DPPH. Therefore, upon

WILEY-LUMINESCENCE-

15

interaction, the scavenging activity of the HAs-BSA complex was less than that of pure HAs but more than that of pure BSA. This finding demonstrates the change in antioxidant propensity of HAs during HAs-BSA interaction.

4 | CONCLUSION

The interaction between HAs and BSA was investigated in vitro using multispectroscopic and computational techniques. The enhanced absorption spectra of BSA found with increasing concentrations of HAs exhibited the HAs-BSA complexation phenomenon, while a decrease in Stern-Volmer quenching constant and binding constant values with rise in temperature implied a static-type quenching mechanism. Thermodynamic parameters revealed that the interaction process was spontaneous in nature. Thermodynamic parameters were evaluated at five different temperatures (viz. 298, 303, 308, 313 or 318 K) and, along with molecular docking, suggested that hydrogen bonding, hydrophobic interaction and van der Waals' forces played a major role during the HAs-BSA interactions for compound 1 and compound 2. Molecular docking and displacement studies revealed the binding site of compound 1 and compound 2 to be at Sudlow's site I, i.e. in subdomain IIA of the BSA molecule. Synchronous fluorescence measurements demonstrated the presence of slight conformational changes around Tyr and Trp moieties. The far-UV CD study illustrated even a change in the secondary structure of BSA during BSAcompound 1 interaction, while a slight change in helicity of BSA occurred during BSA-compound 2 complexation. Cyclic voltammetry studies revealed that the binding process involved during HAs-BSA interaction was slower for compound 1 and faster for compound 2. DPPH-scavenging activity exhibited changes in the antioxidant propensities of HAs upon interaction with protein. The work presented here gives insight into information about mode of interaction and biophysical mechanisms involved during HAs-BSA interactions and. therefore, helps in understanding their therapeutic efficacy. Therefore, this study may provide an important insight for drug distribution and serve as a template for the further development of HAs, using additional modification and the way to design more dynamic and specific binding agents. Therefore, the work performed here could be an important step towards introducing a new drug against diseases such as cancer.

ACKNOWLEDGEMENTS

The authors are indebted to UGC for providing a BSR Faculty Fellowship to RP, Grant No. F. No. 18-1/2011(BSR), Id 201617-BSRFACULTY-10225-1, and for financial assistance under scheme RGNF to YT (F117.1/2014-15/RGNF-2014-15-ST-CHH-57303/ SAIII/Website), and to DST for awarding an Inspire Fellowship to MT (DST/IN-SPIRE Fellowship/2013/635). MK Siddiqi is extremely thankful to the Department of Biotechnology, India, for providing financial assistance in the form of a Senior Research Fellowship.

CONFLICT OF INTEREST

There are no conflicts to declare.

ORCID

Rainy Agrawal b https://orcid.org/0000-0003-2852-2057 Mohammad Khursheed Siddiqi b https://orcid.org/0000-0002-6522-1643

Yamini Thakur I https://orcid.org/0000-0003-1279-236X Mamta Tripathi I https://orcid.org/0000-0001-8235-9110 Rama Pande I https://orcid.org/0000-0001-7533-7837

REFERENCES

- [1] N. Shahabadi, M. Maghsudi, J. Mol. Struct. 2009, 929, 193.
- [2] G. Zolese, G. Falcioni, E. Bertoli, R. Galeazzi, M. Wozniak, Z. Wypych, E. Gratton, A. Ambrosini, *Proteins* 2000, 40, 39.
- [3] W. H. Ang, E. Daldini, L. Juillerat-Jeanneret, P. J. Dyson, *Inorg. Chem.* 2007, 46, 9048.
- [4] T. Kosta, T. Maryama, M. Otagiri, Pharm. Res. 1997, 14, 1607.
- [5] P. Manivel, S. Anandakumarb, M. Ilancheliana, Luminescence 2014, 30, 729.
- [6] X. Cao, H. Li, Y. Yue, Y. Wu, Vib. Spectrosc. 2013, 65, 186.
- [7] Y. Lou, K. Zhou, D. Pan, J. Shen, J. Shi, J. Photochem, Photobiol, B: Biology 2017, 167, 158.
- [8] J. Shi, D. Pan, M. Jiang, T. Liu, Q. Wang, J. Photochem, Photobiol, B: Biology 2016, 164, 103.
- [9] M. M. Alam, F. A. Qais, I. Ahmad, P. Alam, R. H. Khan, I. Nasee, J. Biomol. Struct. Dyn. 2017, 36, 795.
- [10] S. Tabassum, W. M. Al-Asbahy, M. Afzal, F. Arjmand, R. H. Khan, Mol. Biosyst. 2012, 8, 2424.
- [11] R. Kakkar, S. P. Gupta, Hydroxamic Acids: A Unique Family of Chemicals with Multiple Biological Activities, Springer-Verlag, Berlin Heidelberg, 2013, Doi:https://doi.org/10.1007/978-3-642-38111-9_2.
- [12] C. J. Marmion, J. P. Parker, K. B. Nolan, Comprehensive Inorganic Chemistry II, Elsevier Ltd, Dublin, Ireland 2013, 683–708. https://doi.org/ 10.1016/b978-0-08-097774-4.00328-4
- [13] D. Khare, R. Pande, Der. Pharma. Chemic. 2012, 4, 66.
- [14] A. K. Asatkar, M. Tripathi, S. Panda, R. Pande, S. S. Zade, Spectrochim, Acta Mol. Bio. 2017, 171, 18.
- [15] R. Khilari, Y. Thakur, M. Pardhi, R. Pande, Nucleosides Nucleotides Nucleic Acids 2015, 34, 332.
- [16] M. Tripathi, R. Khilari, Y. Thakur, B. Verma, M. Pardhi, R. Pande, J. Macromol, Sci. A. 2017, 54, 85.
- [17] P. Singh, R. Pande, J. Mol. Liq. 2017, 248, 91.
- [18] P. Singh, R. Pande, J. Fluoresc. 2016, 26, 67.
- [19] P. Singh, D. Khare, R. Pande, Chem. Pap. 2014, 68, 1298.
- [20] V. K. Gupta, S. G. Tondon, J. Chem. Eng. Data 1972, 17, 248.
- [21] Y. Liu, Y. Liu, R. Guo, J. Solution Chem. 2011, 40, 1140.
- [22] C. N. Pace, F. Vajdos, L. Fee, G. Grimsley, T. Grey, Protein Sci. 1995, 4, 2411.
- [23] M. Hazra, T. Dolai, A. Pandey, S. K. Dey, A. Patra, J. Saudi Chem. Soc. 2017, 21, S240.
- [24] K. Wallevik, J. Biol. Chem. 1973, 248, 2650.
- [25] B. K. Paul, A. Samanta, N. Guchhait, J. Phys. Chem. B 2010, 114, 6183.
- [26] A. M. Alanazi, A. S. Abdelhameed, PLoS ONE 2016, 11, e0146297.

16 WILEY-LUMINESCENCE

- [27] B. K. Seth, A. Ray, A. Saha, P. Saha, S. Basu, J. Photochem. Photobiol. B: Biology. 2014, 132, 72.
- [28] N. Shahabadi, S. Hadidi, Spectrochim. Acta A 2012, 96, 278.
- [29] S. K. Sugunan, B. Robotham, R. P. Sloan, J. Szmytkowski, K. P. Ghiggino, M. F. Paige, R. P. Steer, J. Phys. Chem. A 2011, 115, 12217.
- [30] H. Xu, S. Gao, J. Lv, Q. Liu, Y. Zuo, X. Wang, J. Mol. Struct. 2009, 919, 334.
- [31] K. Laskar, P. Alam, R. H. Khan, A. Rauf, Eur. J. Med. Chem. 2016, 122, 72.
- [32] V. K. Verma, K. Tapadia, T. Maharana, A. Sharma, Luminescence 2018, 33, 1408.
- [33] J. H. Shi, J. Chen, J. Wang, Y. Y. Zhu, Q. Wang, Spectrochim. Acta A 2015, 149, 630.
- [34] N. C. Garbett, N. B. Hammond, D. E. Graves, Biophys. J. 2004, 8, 3974.
- [35] S. Yadav, I. Yousuf, M. Usman, M. Ahmad, F. Arjmanda, S. Tabassum, RSC Adv. 2015, 5, 50673.
- [36] T. Förster, O. Sinanoglu, Modern Quantum Chemistry, (Ed: O. Sinanoglu), Academic Press, New York. 1965, 93–137.
- [37] L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Liu, L. Wang, C. Xu, J. Phys. Chem. C 2011, 115, 16315.
- [38] D. Sarkar, RSC Adv. 2013, 3, 24389.
- [39] N. V. Rakotoarivelo, P. Perio, E. Najahi, F. O. Nepveu, J. Phys. Chem. B 2014, 118, 13477.
- [40] P. Job, Ann. Chim. 1928, 9. 113e203
- [41] S. K. Haq, S. M. Atif, R. H. Khan, Biochimie 2005, 87, 1127.
- [42] W. Zhang, Q. Zhang, F. Wang, L. Yuan, Z. Xu, F. Jiang, Y. Liu, *Luminescence* 2015, 30, 397.
- [43] C. Louis-Jeune, M. A. Andrade-Navarro, C. Perez-Iratxeta, Proteins 2011, 80, 374.
- [44] F. Jalali, P. S. Dorraji, J. Pharm. Biomed. Anal. 2012, 70, 598.
- [45] C. Xiao, F. Jiang, B. Zhou, R. Li, Y. Liu, Photochem. Photobiol. Sci. 2011, 10, 1110.
- [46] D. S. Goodsell, G. M. Morris, A. J. Olson, J. Mol. Recognit. 1996, 9, 1.
- [47] P. Goupy, C. Dufour, M. Loonis, O. Dangles, J. Agric. Food Chem. 2003, 51, 615.
- [48] M. Yang, Y. Wu, J. Li, H. Zhou, X. Wang, J. Agric. Food Chem. 2013, 61, 7150.
- [49] Z. Chi, R. Liu, Biomacromolecules 2010, 12, 203.
- [50] X. Liu, Z. Ling, X. Zhou, F. Ahmad, Y. Zhou, J. Photochem. Photobiol. B: Biology. 2016, 162, 332.
- [51] P. Alam, A. S. Abdelhameed, R. K. Rajpoot, R. H. Khan, J. Photochem. Photobiol. B: Biology. 2016, 157, 70.
- [52] A. S. Abdelhameed, J. Spectrosc. 2015, 9, 435674.
- [53] P. Alam, S. K. Chaturvedi, T. Anwar, M. K. Siddiqi, M. R. Ajmal, G. Badr, M. H. Mahmoud, R. H. Khan, *JOL* **2015**, *164*, 123.
- [54] X. Zhao, R. Liu, Z. Chi, Y. Teng, P. Qin, J. Phys. Chem. B 2010, 114, 5625.
- [55] L. Ding, P. Zhou, H. Zhan, X. Zhao, C. Chen, Z. He, Chemosphere 2013, 92, 892.
- [56] F. Tian, F. Jiang, X. Han, C. Xiang, Y. Ge, J. Li, Y. Zhang, R. Li, X. Ding, Y. Liu, J. Phys. Chem. B. 2010, 114, 14842.
- [57] F. Ahmad, Y. Zhou, Z. Ling, Q. Xiang, X. Zhou, RSC Adv. 2016, 6, 35719.
- [58] A. S. Abdelhameed, A. M. Alanazi, A. A. Kadi, Anal. Methods 2015, 7, 5096.

- [59] J. Hou, Z. Wang, Y. Yue, Q. Lia, S. Shao, Luminescence 2015, 30, 780.
- [60] X. M. Zhou, W. J. Lu, L. Su, Z. J. Shan, X. G. Chen, J. Agric. Food Chem. 2012, 60, 1135.
- [61] P. D. Ross, S. Subramanian, *Biochemistry* **1981**, *20*, 3096.
- [62] G. R. Bardaje, Z. Hooshyar, P. Shafagh, S. Ghiasvand, N. Kakavan, JOL 2014, 156, 55.
- [63] Y. Tenga, L. Zoua, M. Huanga, W. Zong, J. Mol. Recognit. 2015, 28, 232.
- [64] Y. Z. Zhang, B. Zhou, B. Zhang, J. Hazard. Mater. 2009, 163, 1345.
- [65] Q. L. Zhang, Y. N. Ni, S. Kokot, J. Pharm. Biomed. Anal. 2010, 52, 280.
- [66] Y. Guo, B. Liu, Z. Li, L. Zhang, Y. Lv, J. Chem, Pharm. Res. 2014, 6, 968.
- [67] A. S. Abdelhameed, S. Nusrat, M. R. Ajmal, S. M. Zakariya, M. Zaman, R. H. Khan, *J. Mol. Recognit.* **2017**, 30, e2601.
- [68] A. Varlan, M. Hillebrand, Molecules 2010, 15, 3905.
- [69] J. B. Lloyd, Nature 1971, 231, 64.
- [70] C. Sun, J. Yang, X. Wu, X. Huang, F. Wang, S. Liu, *Biophys. J.* 2005, 88, 3518.
- [71] T. Yuan, A. M. Weljie, H. J. Vogel, Biochemistry 1998, 37, 3187.
- [72] E. Rahnama, M. Mahmoodian-Moghaddam, S. Khorsand-Ahmadi, M. R. Saberi, J. Chamani, J. Biomol. Struct. Dyn. 2014, 33, 513.
- [73] S. R. Feroz, S. B. Mohamad, N. Bujang, S. N. Malek, S. Tayyab, J. Agric. Food Chem. 2012, 60, 5899.
- [74] M. Y. Beck, I. Nagypal, Chemistry of Complex Equilibria, Wiley, New York 1990 112.
- [75] P. Alam, S. K. Chaturvedi, M. K. Siddiqi, R. K. Rajpoot, M. R. Ajmal, M. Zaman, R. H. Khan, *Sci. Rep.* **2016**, *6*, 1.
- [76] P. Bourassa, S. Dubeau, G. M. Maharvi, A. H. Fauq, T. J. Thomas, H. A. Tajmir-Riahi, *Biochimie* **2011**, *93*, 1089.
- [77] X. Ma, J. Yan, Q. Wang, D. Wu, H. Li, Int. J. Biol. Macromol. 2015, 77, 280.
- [78] D. Roy, V. Kumar, J. James, M. S. Shihabudeen, S. Kulshrestha, V. Goel, K. Thirumurugan, PLoS ONE 2015, 10.
- [79] P. A. Magdum, N. M. Gokavi, S. T. Nandibewoor, *Luminescence* 2017, 32, 206.
- [80] K. Karami, M. Alinaghi, Z. Amirghofran, J. Lipkowski, A. A. Momtaziborojeni, New J. Chem. 2018, 42, 574.
- [81] J. A. Molina-Bolívar, F. Galisteo-González, C. C. Ruiz, M. Medina-O'Donnell, A. Parra, J. Mol. Liq. 2015, 208, 304.
- [82] S. V. Jovanovic, S. Steenken, C. W. Boone, M. G. Simic, J. Am. Chem. Soc. 1999, 121, 9677.
- [83] D. Khare, B. Verma, R. Pande, Asian J. Pharm. Clin. Res. 2012, 5, 121.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Agrawal R, Siddiqi MK, Thakur Y, et al. Explication of bovine serum albumin binding with naphthyl hydroxamic acids using a multispectroscopic and molecular docking approach along with its antioxidant activity. *Luminescence*. 2019;1–16. https://doi.org/10.1002/bio.3645

(A JOURNAL OF DISCURSIVE SOCIAL SCIENCE)

अर्द्धवार्षिक सामाजिक विज्ञान शोध पत्रिका

वर्ष-5, अंक-9 जनवरी-जून 2019

ISSN 2394 - 7810

(बस्तर विशेषांक)

Peer Reviewed Journal

ामाजिक विज्ञान अध्ययन एवं शोध संस्थान<u>,</u>

Scanned by CamScanner

Scanned by CamScanner

प्रबन्धकीय मण्डल डॉ. धीरेन्द्र कुमार सिंह डॉ. सुभाष कुमार गुप्ता डॉ. राकेश प्रताप

डॉ. आनन्द कुमार उपाध्याय डॉ. मनीष कुमार पाण्डेय

सह सम्पादक

प्रधान सम्पादक

डॉ. लक्ष्मण गुप्त

अतिथि सम्पादक

डॉ. रूपेन्द्र कवि

प्रधान सम्पादन

सम्बोध

(A Journal of Discursive Social Science) (बरतर विशेषांक)

अनुक्रम

1	बस्तर के भतरा जनजाति के विवाह संस्कार का	
	मानववैज्ञानिक अध्ययन	7-16
	– डॉ. रूपेन्द्र कवि	
2.	अपना स्वरूप बदलती बस्तर की ढोकरा कला	19-37
	– डॉ. आनन्द कमार उपाध्याय	
3.	बस्तर : लोकगीतों की उजास	38-48
	– डॉ. भुवालसिंह	
4	बस्तर के मडिया और माडिया गोंड आदिवासियों की तत्वदा	Z
	(आर्थिक, सामाजिक एवं धार्मिक जीवन के परिपेक्ष्य में)	49-68
	— डॉ. किरण नुरूटी	
5.	दंडामी माड़िया जनजाति के पारंपरिक नृत्य एवं परिवर्तन	
	का अध्ययन – <mark>डॉ. रा</mark> जेन्द्र सिंह	69-76
6.	धुरवा संस्कृति में वृक्षों से संबंधित मान्यताएं	77-90
	– इंटो टेकाम	
	- 281 6479	

बस्तर के मुड़िया और माड़िया गोंड आदिवासियों की तत्वदृष्टिः आर्थिक, सामाजिक एवं धार्मिक जीवन के परिपेक्ष्य में डॉ. किरण नुरूटी

बस्तर आदिवासी बाहुल्य संभाग है। यहाँ गोंड आदिवासियों की उप जनजाति मुरिया और माड़िया निवास करते हैं। मुरिया जनजाति बस्तर संभाग के प्रायः सभी क्षेत्रों में निवास करते हैं और क्षेत्रियता के आधार पर इनकी बेली. भाषा, खान—पान, रहन—सहन आदि में कुछ अंतर देखा जा सकता है। बस्तर में गोंड आदिवासियों की एक शाखा को मुरिया कहा जाता है। बस्तर के हत्बी बोली में मूर का अर्थ आदिकाल होता है। तथा आदिकाल से रहने वाले लोगों को मुरिया कहा जाता है। पहाड़ को माड़ कहा जाता है। इसलिए पहाड़ी क्षेत्र में रहने वालों को माड़िया कहा गया।

उत्पत्ति संबंधी दंतकथा

आदिवासी समाज के बालसाय वड्डे एवं लक्ष्मण दुग्गा अपने उत्पत्ति सहायक प्राध्यापक, समाजशास्त्र, शासकीय गुण्डाधूर स्नातकोत्तर महाविद्यालय कोण्डागाँव, (छग्.) सम्बोधः अर्द्ध वार्षिक शोध पत्रिका वर्ष–5, अंक–9

संबंधी दंतकथा कुछ इस तरह बताते हैं – आदिकाल में जब जल–पल्लक हुआ था जिसे गोंडी भाषा में "बुम बुड़ना"कहते हैं। तब एक पिता अपने पुत्र और पुत्री को एक बड़ा तुमा (सुखी लौकी) के अंदर खाद्य सामग्री के साथ बिठा दिया। वे पानी में तैर रहे थे, बाकी सब डूब चुका था। वे अंदर से अपने पिता को आवाज देते. तब तुमा के मुंह से हवा टकराकर हुंक्कार की आवाज आती थी। भाई–बहन को लगता था, कि उसके पिता बाहर है। इसके बाद जब पृथ्वी बाहर आई तब तुमा उससे टकराकर टूट गया, तब दोनों भाई--बहन बाहर निकले। उन्होंने बाहर आकर देखा कि केवल पानी, पेड़-पौधे और पहाड़ थे। वे भटकने लगे, उन्हें भूख भी लगी थी, खाने के लिए भाई मछली पकड़ रहा था तभी उसके हाथ में एक कैना (जलपरी) लगी। उसने उससे विवाह कर लिया। उसी तरह उसकी बहन जंगल में भटक रही थी तो उसकी मुलाकात कौड़ो (लड़के की पवित्र आत्मा) से हुई, उसने भी उससे विवाह कर लिया। इस तरह इनकी संतानें विशम गोत्रीय होने से इनके मध्य वैवाहिक संबंध बना और यही संबंध आदिवासी समाज में कायम है। समगोत्रिय विवाह इस समाज में वर्जित है। इनकी वंशवृद्धि से आदिवासी समाज बना इसलिए आदिवासी अपने आप को इस भूमि का मूल निवासी मानते हैं।

आर्थिक परिप्रेक्ष्य

प्रकृति आधारित जीवनयापन करने वाला बस्तर का आदिवासी जन्म के बाद जब होश संभालता है, तब सबसे पहले उसका सामना प्रकृति से होता है। जन्म से लेकर मृत्यु तक उसकी सारी आवश्यकताओं की पूर्ति प्रकृति से ही होती है। उसके आस्था विश्वास और परम्पराएं प्रकृति के साथ इस कदर घुल मिल गई हैं कि इसे अलग कर पाना असंभव है। बस्तर का आदिवासी समाज अपनी आवश्यकताओं की पूर्ति प्रकृति से प्राप्त निःशुल्क उपहार और अपने श्रम से उपजाये गए उपज से करता है। वह श्रम से कोदों, कुटकी, मड़िया, कोसरा, सांवा (धान प्रजाति की उपज) तथा धान, उड़द, मूंग, अलसी, सरसों, कुलथी आदि अपनी बाड़ी व खेतों में उपजाता है। इस उपज का वह

Scanned by CamScanner

51

and a second

इत्तर के मुड़िया और माड़िया गोंड आदिवासियों की तत्वदृष्टि बार हा स्वर्थ उपमोग करता है परन्तु उसकी अर्थव्यवरथा का मुख्य आधार वनोपज हा स्वर्थ जन्म है। जो उपज उसे बाड़ी और गांव के आज र्व^{ई उपना} ह^{तई} करना है। जो उपज उसे बाड़ी और गांव के आस–पास मिलता है उसे ह^{तुई क}रना है। जो है और जो जंगल से प्राप्त होना है संग्रह करना समलता है उसे जो जंगल से प्राप्त होता है उसे बनोपज कहते लधु बनोपज कहते है और जो जंगल से प्राप्त होता है उसे बनोपज कहते त्र^{षु वनापुर} बहुडा, आंवला, लाख, साल-बीज, चिरोजी, कोसा, शहद औषधि है। ^{हरी,} बहुडा, जावला, लाख, साल-बीज, चिरोजी, कोसा, शहद औषधि है। ^{हरा.} व^{पज को} बनोपज कहा जाता है। और आम, इमली, महुआ, टोरा, तेंदुपत्ता व^{पज को} बनोपज के अंतर्गत आते है। एक लो सालाल उपज पा उपज पा आदि लघु वनोपज के अंतर्गत आते हैं। एक दो सप्ताह इन वनोपज को संग्रह आद लउ आद लउ कर सुखा लिया जाता है फिर अपने गांव के आस–पारा होने वाले हाट–बाजार कर सुखा लिया जाता अन्य आवश्यकताओं की मार्ड नगरे हैं। कर चुप्त अपनी अन्य आवश्यकताओं की पूर्ति करते हैं। इन हाट-बाजारों में बिक्य कर अपनी अन्य आवश्यकताओं की पूर्ति करते हैं। इन हाट-बाजारों में बिक्य कर अपनी अन्य आवश्यकताओं की पूर्ति करते हैं। इन हाट-बाजारों भे^{वज्ञभ} को आदिवासियों के जीवन में बड़ा महत्व है, इसमें वे अपने द्वारा संग्रहित को आदिवासियों के जीवन में बड़ा महत्व है, इसमें वे अपने द्वारा संग्रहित का आप बा को बेचकर तेल, कपड़ा, साबुन, नमक जैसे जरूरत के सामान क्रय उपज को बेचकर तेल, कपड़ा, साबुन, नमक जैसे जरूरत के सामान क्रय तपण भा तरते हैं। आदिवासी परिवार जब हाट-बाजार जाते हैं तो कुछ न कुछ सामान करते हैं। आदिवासी परिवार जब हाट-बाजार जाते हैं तो कुछ न कुछ सामान करत है। अवश्य लेकर जाते हैं। वहां वे अपने सगे–संबंधियों से मिलते हैं, सुख–दुख अवर्ष बांटते हैं, सूचना का आदान-प्रदान होता है। प्रकृति के बीच रहने वाले इन बाद्यासियों के जीवन में मनोरंजन के अवसर कम आते हैं, इसलिए इन हाट-बाजारों में अपने लोगों के साथ मिलने जुलने के अलावा मनोरंजन भी हो जाता है। अपने साथ लाये हुए सल्फी (सल्फी वृक्ष से निकला हुआ मादक भेय). महुए की शराब, लांदा (चांवल से बनी शराब) को एक गोल घेरे में बैठकर स्त्री, पुरूष व बच्चे सभी लोग पीते है तथा सुख-दुख की बातें करते है।

मनुष्य का आखेट से संबंध प्राचीनकाल से रहा है यह कर्म मुख्यतः क्षुधापूर्ति और सामान्यतः मनोरंजन से संबंधित रहा है। जानवरों के सींग और पक्षियों के परों का उपयोग आज भी श्रृंगार, सौन्दर्य की अभिवृद्धि और दैनिक उपयोग में किया जाता है। वस्तर के आदिवासियों के लिए किसी भी जानवर का मांस लगभग समान रूप से प्रिय है, चाहे वह हिरण या जंगली भैसा का हो, बंदर–भालू या लोमड़ी का हो या गाय, बैल, खरगोश या चूहे का हो। वे अपने टोटमिक पशु को छोड़कर सभी का शिकार करते हैं। छोटे जानवरों का शिकार व्यक्तिगत तौर पर किन्तु बड़े जानवर का शिकार सामूहिक तौर पर किया जाता रहा है। जंगलों में बड़े–बड़े फंदे लगाकर अपना शिकार पकड़ते
सम्बोधः अर्द वार्षिक शोध पत्रिका वर्ष-5, अंक-9

है। शिकार पर जाने से पूर्व समूह वन देवी की पूजा करता है। यहाँ के आदिवासी मछली मारने में भी निपुण हैं वे अपने मछली पकड़ने के जाल एवं उपकरण स्वयं तैयार करते हैं, जो बांस एवं धागों से बने होते है।

किसी भी धार्मिक आयोजन से पूर्व शुभ-अशुभ का संकेत देखने के लिए भी सामूहिक आखेट की परम्परा रही है, किन्तु वर्तमान में शासकीय प्रतिबंध एवं तेजी से घटते वनों से जंगली जानवर भी समाप्त हो गये है। पर चोरी से आखेट अब भी होता है।

बस्तर में मैदानी क्षेत्र में की जाने वाली कृषि निम्न स्तर की है जिसमें उत्पादन बहुत कम होता है। अबूझमाड़ के माड़िया जनजाति आज भी स्थानांतरित कृषि करते हैं। यही कारण है उनकी पूरी अर्थव्यवस्था वनोपज एवं लघुवनोपज पर टिकी हुई है। बस्तर में उद्योग नहीं के बराबर है, बैलाडीला जहां से लौह अयस्क निर्यात किया जाता है वहां भी तकनीकी प्रशिक्षण के अभाव में अकुशल मजदूर के रूप में काम मिलता है।

बस्तर का आदिवासी समाज सामुदायिक जीवन जीता है। वह अपना प्रत्येक कार्य समूह के साथ करता है, जिससे यह महसूस होता है कि वह जत्सव मना रहा है। इस तरह के सामूहिक कार्य को बेठिया या विटटे कहा जाता है। एक व्यक्ति जिसका काम होता है वह बकरा या सूअर काट कर मांस का भाग रखता है। उस भाग को लेने वाला, निर्धारित दिन उस व्यक्ति का काम करने के लिए वचनबद्ध होता है, अथवा ग्राम बैठक में अपनी बात रखता है जिससे निर्धारित दिन गांव के प्रत्येक घर से एक व्यक्ति काम करने जाता है। दिन का भोजन व्यवस्था वह सामान्य तरह से करता है किन्तु रात्रि के भोजन में बकरा, सुअर अथवा मूर्गा एवं शराब पिलाता है। अर्थात् काम के बदले दावत दिया जाता है। इसी तरह किसी व्यक्ति का दूसरे गांव में काम होता है तब वह जानकार लोगों से निवेदन करता है तथा उनके सम्मान में शराब परोसता है, पीते हुए सब सलाह मशवरा करते हैं और उस कार्य को मिलकर करते हैं। आदिवासी समाज में कोई बड़ा या छोटा नहीं होता, सबकी

बस्तर के मुड़िया और माड़िया गोंड आदिवासियों की तत्वदृष्टि 53

समान भागीदारी होती है। सामाजिक कार्यो को करने से पूर्व सामाजिक बैठक क्विये जाते हैं और सामूहिक निर्णय लेकर कार्य किया जाता है। इसी तरह किये जाते हैं और सामूहिक निर्णय लेकर कार्य किया जाता है। इसी तरह क्विये कार्यों को करने के लिए बैठक कर देवताओं से अनुमति ली जाती है बार्मिक कार्यों को करने के लिए बैठक कर देवताओं से अनुमति ली जाती है तब उस कार्य को किया जाता है। आदिवासी समाज अपने कार्य को करने तब उस कार्य को किया जाता है। आदिवासी समाज अपने कार्य को करने के वहले देवताओं की अनुमति जरूर लेता है और देवता के बतायें अनुसार के वहले देवताओं की अनुमति जरूर लेता है और देवता के बतायें अनुसार उस काम को करता है। आदिवासियों की सम्पूर्ण अर्थव्यवस्था महिलाओं पर उस काम को करता है। आदिवासियों की सम्पूर्ण अर्थव्यवस्था महिलाओं पर हकी होती है। वह पुरूषों के कार्य करने में भी सक्षम होती हैं। यही कारण है कि महिलाओं का दर्जा नीचे नहीं है।

सामाजिक परिप्रेक्ष्य

मुरिया जनजाति के घर दो कमरों के मिट्टी एवं खपरैल के बने घर होते हैं। घर के बाहर एक मंडप बना होता है। आस-पास सूअर एवं बकरी के लिए अलग झोपड़े बनाये जाते है। गाय, बैल खुले में रखे जाते है। घर के एक कोने में मुर्गियों को रखा जाता हैं विवाह के बाद नवदम्पति अपना के एक कोने में मुर्गियों को रखा जाता हैं विवाह के बाद नवदम्पति अपना अलग घर बनाते है जिसमें सिर्फ पति-पत्नी रहते है। घर बनाते समय परिवार और गोटुल के सदस्यों का पर्याप्त सहयोग मिलता है। युवक को विवाह के बाद पैत्रिक जमीन में से कुछ जमीन खेती के लिए मिलता है। लड़कियों को बीत्रक सम्पत्ति में हिस्सा नहीं दिया जाता। अक्सर सबसे छोटा पुत्र ही अपने माता-पिता के साथ रहता है। गोद लेने का प्रकरण अपवाद स्वरूप ही है। बस्तर के आदिवासियों के सामाजिक संस्कार निम्न तरह किये जाते हैं-

1. जन्म संस्कार

गोंड़ महिलाएं गर्भावस्था में सभी प्रकार के कार्य कर सकती है। कुछ कार्यों को छोड़कर जैसे— भारी वजन उठाना, पेड़ पर चढ़ना आदि। बच्चे का जन्म घर से अलग स्थान पर झोपड़े में करवाया जाता था, क्योंकि उसका झोपड़ा एक कमरे का होता था, जहां उनके पुरखों एवं देवताओं का स्थान होता था। महिलाओं की माहवारी एवं प्रसव को आदिवासी समाज में अपवित्र माना जाता है। इसलिए ऐसे वक्त में महिलाओं के लिए अलग से बनाये हुए सम्बोधः अर्द्ध वार्षिक शोध पत्रिका वर्ष-5, अंक-9

झोपड़े होते हैं। वह घर से संबंधी कोई कार्य, न ही देवताओं संबंधी कोई कार्य कर सकती। इस अवस्था में वह बहुत कमजोर व अस्वस्थ होती है। उसे कर सकती। इस अवस्था में वह बहुत कमजोर व अस्वस्थ होती है। उसे आराम की आवश्यकता होती है। उसे पूर्ण आराम के लिए ही इस प्रकार की आराम की आवश्यकता होती है। उसे शारीरिक श्रम से मुक्ति मिल सके। व्यवस्था की गई है, ताकि उसे शारीरिक श्रम से मुक्ति मिल सके।

वर्तमान समय में घर के बरामदे में अथवा अस्पताल में प्रसव कराया जाता है। गांव में प्रसव में गांव की बुजुर्ग महिलाएं सहयोग करती है। प्रसव जाता हो गांध काम नहीं करवाने का कारण उस वक्त बहुत ज्यादा एव माहपारी के ग्रसित होती है। यह निर्योग्यता उन्हें कष्ट से बचाने के लिए होता है। पिता को भी विभिन्न निर्योग्यताओं का पालन करना पड़ता है। पली एवं बच्चे से संबंधित सभी कार्य वही करता है। जिससे पति-पत्नी के संबंध में प्रगाढ़ता आती हैं। बेटा हो या बेटी दोनों में भेद नहीं किया जाता। दोनों का नामकरण समान उत्साह से मनाया जाता है। मुण्डन आदि का कार्य समधी (विषम गोत्रीय) परिवार के सदस्य करते हैं। बच्चे का नेंग- दस्तुर बुआ करती है। यहां सामाजिक व्यवस्था ऐसी बनी हुई है कि नातेदारी में निर्भरता का संबंध बना रहता है। जन्म के बाद यह विचार किया जाता है कि जन्म लेने वाला बालक या बालिका के रूप में परिवार के किस पूर्वज ने जन्म लिया है। यह जानने के लिए कई प्रकार की विधि अपनायी जाती है जैसे सिंहाडी के पत्ते में पोटली बांधकर बच्चे को पकड़ा दी जाती है और माता-पिता के खानदान कि पूर्वजों का नाम लिया जाता है जिस नाम पर बच्चा पोटली गिरा देता है, तो उसी पूर्वज का पुर्नजन्म मान लिया जाता है। नाम प्रायः प्रमुख मुखियाओं के द्वारा रखा जाता था, जो दिन महीने या उसकी शारीरिक बनावट के आधार पर होते थे। अब आधुनिक नाम रखे जाते हैं। बच्चे को गाय का दूध नहीं पिलाया जाता, यहां के आदिवासियों में यह मान्यता है कि बछड़े के अधिकार का दूध यदि बच्चा पियेगा तो मां का दूध सूख जायेगा। बच्चा जब दो–तीन महीने का होता है तो उसे बाजार दिखानें की रस्म की जाती है। मां उसे बाजार ले जाती हैं और बाजार में लाई चना फेंकतीं है। मेला हो तो वह शे बच्चों को दिखाया जाता है। देवी देवताओं पर लाई चना

Scanned by CamScanner

ब्रस्तर के मुड़िया और माड़िया गोंड आदिवासियों की तत्वदृष्टि 55

केंका जाता है। इसका अर्थ यह होता है कि बच्चा अब सांसारिक जीवन में प्रवेश कर रहा है। बाजार दिखाने का अर्थ बच्चे को सांसारिक जीवन में प्रवेश कराना होता है। वैसे दो तीन महीने मे बच्चा समझने लायक तो नहीं होता, कर इसका महत्व यह भी होता है कि बच्चे के नामकरण पर सभी रिश्तेदार नही आ पाते बाजार में ही रिश्तेदार एवं अन्य समाज के लोगों से बच्चे का परिचय कराया जाता है।

आदिवासी समाज अपनी आवश्यकताओं की पूर्ति के लिए सदा संघर्षरत रहता है। पति—पत्नी दोंनों आर्थिक क्रियाओं में संलग्न रहते हैं, प्रसव ही एक ऐसा मौका होता है जब दोनो पति— पत्नी मिलकर बच्चे की देख रेख करते है। आदिम समाज अपनी संपूर्ण कार्यों को छोड़कर बच्चों की देख भाल में लग जाता है। वर्तमान संदर्भ में देखें तो शासन भी बच्चें के जन्म के बाद मातृत्व एवं पितृत्व अवकाश देता है क्योंकि इस अवस्था में बच्चे को सही देख रेख की आवश्यकता होती है।

2. विवाह संस्कार

बस्तर के मुरिया माड़िया जनजाति में विवाह ममेरे फुफेरे शई बहनों में करने को प्राथमिकता दी जाती है। आदिवासियों की मान्यता है कि निकट रिश्तेदारी में विवाह होने पर बहू—ननद की बेटी होगी या शई की बेटी होगी ऐसे रिश्तों को बड़े प्यार से निभाया जाता है। विवाह का प्रस्ताव लड़के की ओर से होता है। जब कन्या मांगने जाते हैं तो लड़के का पिता कहता है— आपके घर में एक फूल खिला है उसे मैं अपनी पगड़ी में खोंचना चाहता हूँ अर्थात कन्या को शिखर पर स्थान देना, ऐसी परम्परा जनजातियों को छोड़कर अन्य समाज में नहीं देखा जाता। यदि कन्या का पिता नहीं देना वाहता तो कहता है – अभी फूल तोड़ने लायक नहीं है। कहीं भी लड़की मांगने जाने से पूर्व शगुन देखा जाता है जैसे – मटका आदि। गांव का गांयता बड़े बर्तन के पानी में युवक–युवती के नाम से मंत्र पढ़कर चावल छोड़ता है। यदि तैरने वाले चांवल एक दूसरे से चिपक जाते हैं तो दूसरे रिश्ते के लिए सम्बंधिः अस्य भागम 14-5, Star-9

बात आगे बढ़ाई जाती है। यदि चावल नीचे बैठ जाता है या चावल विपरीत बात आग बढ़ाइ जाता एक की बात यहीं समाप्त की जाती है। इस बात पर दिशा में जाये तो इस रिश्ते की बात यहीं समाप्त की जाती है। इस बात पर विशा म जाय ता र पा पर किसी तरह का समझौता नहीं किया जाता क्योंकि यह प्राकृतिक प्रक्रिया होती है। यह एक प्रकार का कुंडली विचार कहा जा सकता है।

विवाह समविषम गोत्र को ध्यान में रखकर किया जाता है। सम गोत्र का विवाह विषम गोत्र में होगा। गोडों में 750 प्रकार के गोत्र पाये जाते है गोंडो की मान्यता है कि सम गोत्र का विषम गोत्र में विवाह होने पर जो नवसत्व उत्पन्न होगा वह पुष्ट और बलशाली होगा। विवाह से पूर्व तीन-चार बार माहला (सगाई) के लिए आते हैं साथ में चिवड़ा गुड़ या लाई मिक्चर एवं शराब लेकर आते हैं। माड़िया जनजाति में बड़े मटके में लांदा एवं बकरा सूअर देना पड़ता है। कुछ क्षेत्रों में शराब, लांदा, सल्फी के साथ एक टोकनी बड़ा बनाकर लाते हैं, रिश्ता स्वीकारने पर समस्त सामग्री बांटकर पीते एवं खाते हैं।

विवाह का अधिकांश खर्च दुल्हा पक्ष को उठाना पड़ता है। विवाह की रस्मों से पूर्व दुल्हन पक्ष को कन्या मूल्य अदा किया जाता है जिसे सत्ता कहा जाता है। उसमें कन्या के पिता को कुछ रूपये दिये जाते हैं। इसका अर्थ यह होता है कि कन्या अन्य देवता के कुल गोत्र की जीव है उसे अपना बनाने से पूर्व उसकी कीमत लड़की के गोत्र में जितने देव होते हैं उसके आधार पर दिया जाता है यदि चार देव हैं तो चार रूपये और पांच देव हैं तो पांच रूपये. इसे देव कौड़ी कहा जाता है। इसके अलावा माता को एक साड़ी, शई को चांदी का कड़ा या रूपये, मामा को रूपये, बहन, बुआ, दादी, नानी को एक-एक साड़ी दी जाती है। पर यह आर्थिक स्थिति पर निर्भर है व कुछ रूपये भी देता है। इस रस्म का अर्थ होता है कि मां ने अपनी पुत्री की परवरिश बड़े कष्ट से किया, उसकी कीमत तथा अन्य महिला नातेदार जिन्होनें कन्या को समाज की परम्पराओं से परिचय कराया। भाई तथा मामा का शे महत्वपूर्ण स्थान होता है इसीलिए इसकी शई कीमत अदा की जाती

56

बरतर के मुड़िया और माड़िया गोंड आदिवासियों की तत्वदृष्टि 57

है। वर्तमान में दूसरे समाज में देखें तो कन्या का संपूर्ण खर्च कन्या पक्ष को है। वर्हन करना पड़ता है। यही कारण है कि दहेज जैसी कुप्रथाओं ने जन्म ही वहन करना पड़ता है। यही कारण है कि दहेज जैसी कुप्रथाओं ने जन्म लिया है। इसके साथ दुल्हा पक्ष एक वक्त का भोजन सामग्री भेंट करता है। विवाह की रस्मों से पूर्व जिम्मीदारिन (ग्रामदेवी) से, देवी की अनुमति के रूप विवाह की रस्मों से पूर्व जिम्मीदारिन (ग्रामदेवी) से, देवी की अनुमति के रूप विवाह की रस्मों से पूर्व जिम्मीदारिन (ग्रामदेवी) से, देवी की अनुमति के रूप देवी के पास से हल्दी लाया जाता है वही हल्दी सबसे पहले दुल्हा – में देवी के पास से हल्दी लाया जाता है वही हल्दी सबसे पहले दुल्हा – देवी के चढ़ाया जाता है। विवाह में छिंद पत्ते के मौर पहनाया जाता है। दुल्हन को चढ़ाया जाता है। विवाह में छिंद पत्ते के मौर पहनाया जाता है। देवाह में समधी अर्थात लड़के / लड़की के मामा की महत्वपूर्ण भूमिका होती विवाह में समधी अर्थात लड़के / लड़की के मामा की महत्वपूर्ण भूमिका होती है समस्त नेंग दस्तूर में इनका विशेष योगदान होता है। विवाह में कन्या की सहमति आवश्यक होती है।

विवाह संबधी कुछ प्रथाएं

- युवक युवती सम–विषम गोत्र के हो और उनमें प्रेम संबंध हो तो विवाह में समाज सहमति देता है किन्तु दोनो सम गोत्र के हों तो समाज उन्हें अलग कर देता है।
- यदि विवाहित स्त्री दूसरे व्यक्ति के लिए भाग जाती है तो भगा ले जाने वाला व्यक्ति पहले पति को विवाह का दुगुना खर्च अदा करता है।
- 3. अगर पुरूष स्त्री को छोड़ता है तो शे वह स्त्री अपने ससुराल के सम्पत्ति की अधिकारी होगी, इसका उपभोग वह अंतिम सांस तक कर सकती है पर विक्रय नहीं कर सकती। इसे वर्तमान संदर्भ में देखा जाए तो इसे भरण–पोषण का अधिकार कह सकते हैं जो तालाक के बाद अदालत प्रदान करता है।
- 4. पति के मरणोपरान्त विधवा अपने देवर या अन्य व्यक्ति से चूड़ी पहन (पुर्नविवाह) सकती है। अन्य व्यक्ति से विवाह करना चाहे तो उसके सास ससुर उसका विवाह खर्च उठाते है। विवाह उपरान्त वह अपने पूर्व ससुराल की सम्पत्ति से वंचित हो जाती है।

सम्बोधः अर्द्ध वार्षिक शोध पत्रिका वर्ष-5, अंक-9

- कन्या अपने पति को छोड़कर मायके में बैठ जाती है तो उसका पति अपने ससूर से विवाह खर्च लेने का अधिकारी होता है।
- 6. यदि कोई व्यक्ति लमसेना (घरजमाई) रखता है तो उसकी बेटी और दामाद दोनो के नाम कुछ सम्पत्ति देनी होती है जिसमें दोनों का संयुक्त अधिकार होता है।
- पति या पत्नी का चारित्रिक दोश होने पर ही संबंध—विच्छेद किया जाता है किन्तु उसमें जाति पंचायत की सहमति आवश्यक होती है।

विवाह संबंधी समस्त नेंग दस्तूर समधी सगा द्वारा किया जाता है। लड़के के रिश्तेदार जब आते हैं तो चावल, कपड़ा, बकरा, सूअर आदि भेंट लाते हैं तथा लड़की के रिश्तेदार उसकी गृहस्थी की एक–एक सामग्री भेंट करने हैं अथवा पैसा भेंट करते हैं, जिससे उनको आर्थिक मदद हो जाती है। लड़की का पिता लड़की को केवल दो साड़ी में शे विदा करें तो शे लड़के पक्ष को स्वीकार्य होती है।

मृत्यु संस्कार

बस्तर के मुरिया माड़िया जनजाति में शव को दफनाने की परम्परा है बहुत बीमार होने की स्थिति में उसे जलाया जाता है। दफनाने से पूर्व उस जमीन को गायता से खरीदा जाता है, जो सांकेतिक होता है, क्योंकि उस गांव को गायता के पूर्वजों ने बसाया था एवं उस गांव में अपने व्यक्तिगत देवी—देवताओं को स्थापित किया था। मृतक को दफनाने की प्रथा के पीछे कारण यह माना जाता है कि यह शरीर मिट्टी का है और अंत में मिट्टी में मिलेगा। पूर्व काल में मठ बनाने की परम्परा नहीं थी केवल दफनाकर पत्थर गाड़ दिया जाता था। पत्थर गाड़ने की प्रथा अब भी कायम है। दक्षिण बस्तर में पत्थर और लकड़ी के स्तम्भ होते हैं, जिस पर मृतक की जीवनी को चित्रित किया जाता है। पूर्व काल से आदिवासियों में एक परम्परा और रही है कि मृतक को दफनाने के साथ गुड़ी के पास एक पेड़ लगाना, जो अन्य संस्कृति के प्रभाव से समाप्त होती जा रही है। बुजुर्गों के मृत्यु संस्कार को उत्सव की इस्तर के मुड़िया और माडिया गोंड आदिवासियों की तत्वदृष्टि

कर¹¹ मनाया जाता है। अधिकांश मोंड गरीब परिवार के है सो सामाजिक ब्रा^{क्}या के अंतर्गत जिस दिन देहावसान होता है उस दिन बाहर से आने वाले ब्रा^{क्}या के अंतर्गत जिस दिन देहावसान होता है उस दिन बाहर से आने वाले ब्रा^{क्}या के भोजन की व्यवस्था गांव वाले करते है। क्रियाकर्म के दिन ब^{दि} गरीब व्यक्ति है तो गांव वाले मिलकर चन्दे के रूप में चावल. दाल एवं बंदा जमाकर खाने–धीने की व्यवस्था करते है। रिश्तेदार भी चांवल लेकर बंसा जमाकर खाने–धीने की व्यवस्था करते है। रिश्तेदार भी चांवल लेकर बंसा जमाकर खाने–धीने की व्यवस्था करते है। रिश्तेदार पर नहीं पड़ता। आते है। इससे मृत्यु संस्कार का आर्थिक भार उसके परिवार पर नहीं पड़ता। समस्त संस्कार समधी परिवार के सदस्य करते है। किसी भी कार्य के लिए बंडित की आवश्यकता नहीं पड़ती। मृतक के क्रियाकर्म में मृतक की आत्मा को आहवान किया जाता है. उसे मटके के रूप में घर में रखा जाता है. जहां बेटियों का जाना वर्जित होता है। मृतक के लिए बाजार विठाया जाता है. जिसका अर्थ होता है इस बाजार के साथ उसका सांसारिक जीवन समाप्त हुआ।

गोटुल (युवागृह)

गोटुल आदिवासी समाज की सामुदायिक जीवन जीने की कला सिखाने वाली पाठशाला है। यह एक ऐसी संस्था है, जो गांव के प्रति उत्तरदायी होती है। इस संस्था में गांव के प्रत्येक परिवार के युवा अनिवार्य सदस्य होते हैं। गांव के युवा 10–12 वर्ष की आयु से प्रवेश करते है और विवाह के बाद सदस्यता स्वतः समाप्त हो जाती है। गांव के सभी कार्य इस गोटुल के सदस्यों द्वारा किया जाता है। किसी घर में कोई भी कार्य, जन्म से लेकर मृत्यु तक के कार्यों में लकड़ी लाना, दोना पत्तल बनाने के लिए पत्ते लाना, धान कूटना, खाना बनाना, परोसना आदि। सभी कार्य युवक युवतियों द्वारा किया जाता है। इन सबका नियंत्रण गोटुल के पदाधिकारियों द्वारा किया जाता है। इसके अलावा गांव के देवकार्य में भी इनकी समान भागीदारी होती है। देवता के सम्मान में मांदर नृत्य, करसाड़ नृत्य, मांदरी नृत्य, हुल्की नृत्य, कोकोरेंग नृत्य, रेला नृत्य सभी इनके द्वारा किया जाता है। जहां आदिवासी संग—संग जीने मरने की कला सीखता है। गोटुल में ही युवा सम्बोधः अर्द्ध वार्षिक शोध पत्रिका वर्ष-5, अंक-6

आदिवासी लोककला के विभिन्न आयामों से परिचित होता है। कहानी किस्सा सुनाता है, पहेलियों बुझाता है, हर रोज लोग नृत्य और लोक गीत गाने का अभ्यास करता है। इन कार्यों को कोई प्रशिक्षण देने वाला नहीं होता, वे एक दूसरे को देखकर स्वयं सीखते हैं। जिस तरह किसी संगठन को चलाने के लिए नियम बनाये जाते है उसी तरह गोटुल के भी अपने नियम कायदे होते है। इन नियमों के उल्लंघन पर दण्ड का प्रावधान होता है। दण्ड के रूप में उसे अधिक कार्य करने की सजा दी जाती है।

गोटुल आदिवासी समाज के लिए बहुत पवित्र जगह होती है। इसमें दुष्कर्म के लिए कोई स्थान नहीं होता। इस समाज में स्त्री पुरूष के नाजायज रिश्तों को स्वीकार नहीं किया जाता। गांव पहले सम–गोत्रीय लोग यानी एक ही परिवार के विस्तार से बने और गोटुल में इन्हीं के बच्चे आते थे, किन्तु बाद में उनके रिश्तेदारों के उस गांव में बसने के बाद गोटुल में विषम गोत्रीय युवक–युवतियाँ आने लगे। अब यहां की व्यवस्था में परिवर्तन आया और सम– गोत्रीय युवक– युवतियों पर नजर रखने लगे। इस तरह गोटुल में दोनों के ऊपर पाबंदी लगी। स्वच्छंद जीवन जीने वाला आदिवासी समाज अवैध संबंध को बहुत ज्यादा बुरा समझता है, इसलिए गोटुल जैसे आदिवासियों के पवित्र स्थल पर इस प्रकार का कृत्य नहीं होता। पूर्व में इस संस्था के बारे में आमक प्रचार किया गया था। यही कारण है कि लोग इसमें इन्हीं बातों को तलाशते हैं। जबकि युवक–युवतियों के बीच हंसी मजाक होना आम बात है पर किसी प्रकार का अवैध संबंध नहीं होता।

आदिवासी समाज की मान्यता है कि गोटुल की स्थापना आदिपुरूष लिंगों पेन ने की है। उन्होंने आदिवासियों को नृत्य के पद संचालन, गीत एवं 18 वाद्ययंत्र दिया है उसी ने गोटुल के युवाओं को इस कला से निपुण किया। उन्होंने ही गोटुल परम्परा की नींव डाली, सब रीति–रिवाज बनाये, जो एक पीढ़ी से दूसरी पीढ़ी में हस्तान्तरित होती चली आ रही है। आज की पीढ़ी भी उसी प्रकार मानती चली आ रही है।

Scanned by CamScanner

बस्तर के मुड़िया और माड़िया गोंड आदिवासियों की तत्वदृष्टि 61

सन् 1940 ई. में वेरियर एल्विन द्वारा एक किताब लिखी गई ''मुरिया एण्ड देयर घोटुल''। इस किताब में आदिवासी समाज की इस अनूठी संख्या की ओर सबको आकर्षित किया। एल्विन पाश्चात्य सभ्यता की सोच रखने वाले लेखक थे, उन्होंने इस संख्या को पाश्चात्य नजरिये से देखा और उसी व्रकार वर्णन किया। उनके लिए अविवाहित युवक-युवतियों का रात में एक साथ रहना. भारत जैसे देश में किसी अलौकिक घटना से कम नहीं थी। उन्हें इनके संबंधों में स्वच्छंद यौनाचार दिखा. जबकि ऐसा कुछ भी नहीं था। इस किताब को पढ़कर हुआ यह कि गोटुल के विषय में नहीं जानने वाले भी अपने आपको विशेषज्ञ बताने लगे। कोई कहता यह युवा मनोरंजन गृह है, तो कोई कहता नाइट क्लब जैसा है, कड्यों ने इसे आदिवासियों का प्रेम विवाह स्थल बता दिया। इस तरह इस संस्था को बदनाम किया गया जिससे यह संस्था समाप्त होने के कगार पर पहुंच गई।

धार्मिक परिप्रेक्ष्य

आदिवासियों के देवों का प्रमुख बड़ा देव है, यह सृष्टि का रचियता है। यह निराकार एवं अजन्मा है, यह शक्ति एवं तत्वों का अभिकर्ता है, यह प्रकृति के कण-कण में विराजमान है। गोंड़ इस बड़ादेव को सल्ले-गागरा / फरसापेन / फड़ापेन / बूढ़ादेव के रूप में स्तुति करते हैं, जिसका अभिप्राय धनात्मक एवं ऋणात्मक शक्ति से है। इसी धनात्मक एवं ऋणात्मक शक्ति के जागृत होने के कारण सृष्टि के स्वरूप का निर्माण हुआ है। इसी शक्ति के कारण ही ग्रह नक्षत्रों के संचालन की गति निर्धारित हुई है। सल्ला-गागरा शक्ति ही नर एवं मादा शक्ति है जिनके मातृत्व एवं पितृत्व गुणों से सन्तति उत्पन्न होता है। सम्पूर्ण आदिवासी समाज मानता है बड़ादेव द्वारा बनाये हुए प्रकृति के समस्त तत्व, संसाधन, जीव, गृह, नक्षत्र, जल, थल, नभ, वायु, अग्नि, चर-अचर, जीव-निर्जीव, जो प्राणी जीवन के अंग हैं जीवनोपयोगी है इसलिए ये देवी देवता के रूप में पूजे जाते हैं।

गोंड़ समुदाय ने जब से सभ्य जीवन में प्रवेश किया तब उसने जंगल

सम्बोधः अर्द्ध वार्षिक शोध पत्रिका वर्ष-5, अंक₋₉

काटकर गांव बसाया। गांव बसाने वाले व्यक्ति के द्वारा गांव के देवी देवताओं की रचना कर व्यवस्थित करता है। सबसे पहले माटी की स्थापना की जाती है जिसे जिमीदारिन कहते हैं। यह गांव के मनुष्यों की सुरक्षा करती है। दूसरी देवी तलूरमुत्ते होती है जो गांव की सीमा पर खापित होती है। यह गांव के समस्त जीव-जन्तु एवं प्रकृति की रक्षक देवी है। इसके अलावा भुमयार्क देव कडरेगाल, मावली, भीमादेव, भैसासूर, सहाड़ा देव, कैना–कोडौ एवं राजड (राव) होते है। राव ग्राम की सभी दिशाओं में स्थापित होते हैं। इसके अलावा जिन्होंने गांव बसाया एवं देवी देवता स्थापित किया उस व्यक्ति की मृत्यु के बाद वह पहला मरघट होता है, जिसे भूमियार कहा जाता है। सभी देवी देवताओं की पूजा के साथ भूमियार की भी पूजा आवश्यक होती है। इन देवी-देवताओं की पूजा का भार गांयता का होता है। गांयता गांव बसाने वाले पहले व्यक्ति का वंशज होता है। गांव में सारे देवी देवता उसके खानदान के होते हैं, जो उसकी बात मानते हैं। गांव का माटी पुजारी वही होता है। इसके अलावा अन्य पुजारी भी होते हैं। देव जिसके शरीर पर सवार होता है उसे सिरहा कहा जाता है। जो चांवल के दाने से शुभ–अशुभ का विचार करता है, उसे गुनिया कहा जाता है। गांव के अन्य देवी देवताओं की पूजा अराधना हेतु अन्य पुजारी नियुक्त होते हैं जो गांयता परिवार से संबंधित होते हैं गांयता भी अलग—अलग तरह के होते हैं — (1) मांटी गांयता (2) पेन गांयता |

मांटी गांयता गांव का पुरोहित होता है। इसके बिना कोई भी धार्मिक, सांस्कृतिक एवं आर्थिक कार्य प्रारंभ नहीं किया जाता। माटी पुजारी केवल आदिवासी होता है। कुल देवता एवं परगना देवता की पूजा हेतु जो गांयता नियुक्त होता है उसे पेन गांयता कहा जाता है। इसका अर्थ यह होता है कि प्रथम गांवों को बसाने का कार्य आदिवासी ने ही किया है अन्य जाति के लोग बाहर से आये हैं।

ग्राम देवता के अलावा कुल देवता, परगना देवता एवं हानाडुमा (पूर्वजों) की अराधना की जाती हैं। इन देवी देवताओं के अलग—अलग प्रकार के प्रतीक चिन्ह होते है जैसे आंगा देव – आंगा किसी देव का शरीर होता

Scanned by CamScanner

बरतर के मुडिया और माड़िया गोंड आविवासियों की तत्ववृष्टि

है जो चार लकड़ी के दुकड़ों का बना होता है। इसका जन्म, विवाह एवं मृत्यु होता है। देवियों के डांग(ध्वज) होते हैं। ध्वज कई रंगों की होती है। काली होता पर होता है। काली की मानी जाती है। कुल देवता के डांग में एव लाग के बने होते है। इसके अलावा त्रिशुल, टंगिया, छत्र, चाकू, संकल पूर्व डोली आदि भी प्रतीक चिन्ह होते है। डोली प्रायः अविवाहित देवियाँ के एव असी जाती । आंगा एवं डोली विशिष्ट तरीके से बनाई जाती है । इनके लिए के होते हैं, जो मानने वाले को अलावा कई देव देवियां तामसिक प्रकृति के होते हैं, जो मानने वाले को अलामा करके अन्य को हानि पहुंचाते है। अन्य जाति में पूर्वजों को विण्डदान कर विदा किया जाता है पर आदिवासी अपने पूर्वजों की आत्मा अपने साथ रखते हैं। यह तब तक रखते हैं जब तक परिवार के दूसरे व्यक्ति की मृत्यु न हो जाए। फिर उसे कुल देवता में मिला दिया जाता है।

गोंड़ आदिवासियों के 750 गोत्र माने जाते हैं। प्रत्येक गोत्र को एक वक्ष, एक पशु एवं एक पक्षी आंबटित किया गया है। वह व्यक्ति अपने गोत्र से संबंधित पशु, पक्षी एवं वृक्ष की सुरक्षा करता है तथा बाकी का भक्षण करता है। इससे प्रकृति का संतुलन बना रहता है। जरूरत के बगैर किसी भी पशु, पक्षी या वृक्ष को नुकसान नहीं पहुंचाया जाता। यह गुण केवल आदिवासियों में ही कायम है।

गोड़ आदिवासियों में समस्त धार्मिक, सामाजिक एवं आर्थिक कार्यो में परिक्रमा घड़ी की उल्टी दिशा में होती है। आदिम समाज मानता है कि प्रकृति का हर कार्य दांये से बांये घूमता है जैसे समस्त ग्रह नक्षत्र सूर्य का चक्कर दांये से बांये लगाते हैं पृथ्वी भी अपनी धूरी पर ऐसे ही चक्कर लगाती है। पेड पर बेल चढ़ना हो या सांप की कुण्डली मारना या पानी में भंवर उठना। पानी में भोंरा घूमना है वह भी दाये से बांये घमना है। गर्मियो में बवंडर भी इसी दिशा में घूमना है इसलिए आदिवासी जब हल चलाते है, जब चक्की चलाते है, तब धान मिंजाई करते समय बैलो का घुमाना, साड़ी विवाह का फेरा, मेला-मडई में देवाओं का फेरा भी दाये से बांये होता है।

63

क जाब नामक साम पात्रका वर्ष-5, अंक-9

प्रकृति आधारित जीवन यापन करने वाला आदिवासी समाज उत्सव प्रेमी होता है। वह किसी भी कार्य को इस ढंग से करता है कि वह त्यौहार जैसा लगे। इन कार्यो को वह धार्मिक आरथा में समाहित कर लेता है। इसमें आदिवासी एवं गैर आदिवासी सभी की भागीदारी होती है। बस्तर में मूल निवासी जातियों में जाति देवता के कार्यों के आधार पर बने है। देवता गोड़ों का होता है उसके कार्य जैसे कलार के घर की शराब, तेली के घर का तेल, लोहार के घर से देवता की सामग्री, घड़वा के घर से देव में चढ़ने वाली मूर्तियाँ तुरही आदि, राउत के लाये हुए पानी से देवता को नहलाया जाता है। कुम्हार हाथी, घोड़ा, हुमनी आदि बनाकर देवकार्य में सहयोग देता है। हर पूजा में मरार फूल भेंट करता है। हर नेंग में प्रसाद बांटने के लिए लाई चना केंवट देता है। गांव के किसी भी जाति के घर विवाह या देवकार्य आदिवासी गांयता के बगैर संभव नहीं होता। इस आदिम व्यवस्था में लोग प्रत्येक कार्य के लिए एक दूसरे पर निर्भर है जो वर्तमान में अन्य संस्कृति के प्रभाव से यह समाप्त होती जा रही है। आदिवासी अपनी दैनिक आवश्यकता की पूर्ति के लिए एक दूसरे पर निर्भर थे, जो लोगों को एक जुट में बांधें रखता था। पर आज यह देखा जा रहा है उसकी सारी आवश्यकताएं केवल दो व्यक्ति पूरी कर रहे हैं एक पूजा करने वाला पंडित और दूसरा व्यापार करने वाला व्यापारी। इस कारण बाकी समाज के लोगों से संबंध टूटता जा रहा है जो समाज के विघटन का संकेत है।

आदिवासियों के बहुत से पर्व हैं जैसे चैतरई (आमाजोगानी), माटी तिहार, हरियाली, नवाखाई, दियारी, दिवाड़, पुपल साड आदि। यह समाज अपने प्रत्येक त्यौहारों में कोई न कोई उपज की जोगानी करता है। जोगानी का अर्थ जागृत करना होता है। जोगानी में गोंड़ आदिवासी किसी भी उपज को चाहे वह प्रकृति से प्राप्त निःशुल्क उपहार हो या जिसे वह अपने श्रम से उपजाता है, उसे सबसे पहले अपने देवी देवताओं में अर्पित करता है। फिर उसे ग्रहण करता है इसे जोगाना कहते है। जोगाने से पहले उसे तोड़ना या खाना तो क्या छूना भी वर्जित होता है। अधिकांश फलों को पक कर नीचे

65

_{इर्रार} के मुहिया और माडिया गोंड आदिवासियों की सत्वयूषिट वर्ण वर ही उठाता है। इन नियमों का वह आज भी पालन करता आ रहा तरने वर ही उठाता है। इन नियमों का वह आज भी पालन करता आ रहा तारने पर हो। तारने पर हो पूर्वजों की सोच रही है कि प्रकृति से प्राप्त फसल पर सबका है। इसके पीछे पूर्वजों की सोच रही है कि प्रकृति से प्राप्त फसल पर सबका है। इसके जारा फैसले पर सबका के नियम नहीं बनाये जाते तो लोगों में अधिकार होता है। यदि इस प्रकार के नियम नहीं बनाये जाते तो लोगों में इतिकार हो। इतिहासीरिता के कारण उन फरालों को कच्ची अवरणा में तोड़ने की प्रवृति इतेहरासीरिता के कारण हो जाता। इन उपायों से लगान की है। होती और फसल खराब हो जाता। इन उपायों से उपज को फलने-फूलने होती आप को प्रयोग्त अवसर मिलता है। इससे उसकी उपयोगिता बनी रहती है। बीज को प्रयोग अन्य अन्नरी उपज देते है। इस तथर आफिल्टर व^{ा प्रमाण} वरिवर्क्त होकर अच्छी उपज देते हैं। इस तरह आदियासी समाज के त्यीहारों वरिवर्क्त होकर अच्छा से महरा संबंध है। का धार्मिक आरण्या से गहरा संबंध है।

गोंड आदिवासी समाज में ऐसा माना जाता है कि प्रकृति ने उसे जो कुछ दिया खुशी या गम वह देवताओं एवं पूर्वजों की कृपा से है। अतः उन्हें कुछ करने के लिए अपने कुल देवता का जात्रा या करसाड़ मनाता है। ये बुश करने के लिए अपने कुल देवता का जात्रा या करसाड़ मनाता है। ये खुः' जात्रा या करसाड़ चैत्र महीने में मनाये जाते हैं।

बादिवासी समाज और चुनौतियाँ

बस्तर के आदिवासियों की अपनी अनूठी संस्कृति है जो उन्हें राष्ट्रीय और अन्तर्राष्ट्रीय पहचान दिलाती है। उसके पूर्वजों ने जिसे आदिकाल से सहेज कर रखा और उसी रूप में उसे सौंपा था। उसे संभालकर रखना वर्तमान समय में आदिवासी समाज के समक्ष बड़ी चुनौती है।

इस संस्कृति को सबसे ज्यादा खतरा इनके समाज के उन लोगों से हूं जो थोड़ा बहुत पढ़ लिख लेने के बाद बेरोजगार है और कुछ करना भी नहीं चाहते। जो लगातार बाहरी लोगों के सम्पर्क में रहकर बाहरी जीवन से प्रमावित होकर आदिवासी समाज को हीन दृष्टि से देखते है। उनकी ऐसी सोच है कि हमारी मान्यता एवं परम्परा के कारण ही हमारा समाज प्रगति नहीं कर पा रहा है। दूसरे समाज के लोगों को आये कुछ ही दिन हुए है और वे लोग घर गाड़ी सभी ले लिए है और हमारा समाज आज भी वैसा ही है, जैसे पूर्वज थे। इसी सोच ने उन्हें विद्रोही बना दिया है। वे इसका प्रमुख कारण आदिवासी समाज में प्रचलित शराब को मानते हैं। उनका मानना है कि शराब

सम्बोधः अर्द्ध वार्षिक शोध पत्रिका वर्ष-5, अंक-6 आदिवासियों की संस्कृति से इस कदर जुड़ा है कि यह समाज को अंदर ह आदियासमा कर रहा है। ऐसी सोच रखने वालों की बात आदिम समाज अनसुनी कर देता है और अपने जीवन में मग्न रहता है।

वर्तमान समय बस्तर के आदिवासियों के लिए मुश्किलों से भरा है। इसकी शुरूआत 80 के दशक में माओवादियों के आगमन के साथ हो चुक था। प्रकृति की गोद में अलमस्त जीवन जीने वाला आदिवासी अपने जीवन में बाहरी दखल बिल्कुल पसंद नहीं करता था। पहले तो इन माओवादियों को भी नजरअंदाज कर दिया। आदिवासियों को अपने साथ जोड़े बगैर वे अपनी मुहिम में कामयाब नहीं हो सकते थे। नक्सलियों ने महसूस किया कि आदिवासी गांवों में एक सामाजिक संगठन गोटुल के रूप में मौजूद है। जो युवक—युवतियों पर अपना मजबूत पकड़ रखता है। उनके ऊपर गोटुल का कानून चलता है। सब एक दूसरे के कार्य व्यवहार को नियंत्रित करते है। नक्सलियों ने गोटुल के क्रियाकलापों को जानना समझना प्रारंभ किया। आदिवासी युवक—युवतियों को नाचना गाना पसंद था। नक्सली भी नाच—गाकर अपना प्रचार प्रसार करने लगे। उनकी आवाजाही गोटुल में होने लगी वे अच्छे गाने नाचने वालों की अपनी अलग से टोली बनाकर जनवादी गीत सिखाने लगे। उन्हें गांव–गांव ले जाने लगे। गांव के बुजुर्गो ने आपत्ति उठाई और लड़कियों को रात में गोटुल जाने पर पाबंदी लगा दी। इधर युवक नक्सलियों की ओर आकर्षित होने लगे। फिर गांव–गांव में बैठकों का दौर चला, जो भी क्षेत्र का प्रभावशाली व्यक्ति था, को अपना निशाना बनाया। जंगल और गांव में होने वाले शासकीय कार्यों को रोकना शुरू किया तब सरकारी लोगों की आवाजाही बंद हो गई। सरकारी योजनाओं का लाभ मिलना बंद हो गया। 10—15 वर्षों से गोटुल बंद है। इसका सबसे ज्यादा प्रभाव आदिवासियों पर पड़ा। उनके लड़के–लड़कियां या तो माओवादियों के साथ गये या तो पुलिस के साथ। आधे जेल में, आधे नक्सली एवं पुलिस प्रताड़ना से दूसरे प्रदेशों में पलायन कर गये है। बचे खुचे तटस्थ रहकर जीवनयापन कर रहे हैं। अन्य क्षेत्र के लोग बस्तर में वैवाहिक संबंध स्थापित नहीं करना चाहते। यही कारण

66

बस्तर के मुड़िया और माड़िया गोंड आदिवासियों की तत्वदृष्टि 67 है कि अन्य जाति के लोग, आदिवासी कन्याओं को बहला—फुसला कर विवाह करने लगे हैं।

आदिवासियों की दुश्वारी यही नहीं थमीं। इनके सामाजिक बिखराव का परिणाम यह हुआ कि अन्य समस्याओं ने पैर फैलाना प्रारंभ कर दिया। इनकी तरूणाई जो गोटुल की मर्यादा में बंधी थी, वह निरंकुश हो गई। वे किसी की बात नहीं सुनते अपने मन की करते, ऐसे में बहुत वर्षों से एक धर्म विशेष के प्रचारकों को मौका मिला। वे गांव-गांव जाकर लड़के-लड़कियों को अपने धर्म में सम्मिलित करने लगे। ये वे ही लोग थे जो अपनी दुश्वारियों का हल इस धर्म में तलाश रहे थे। नये बने आदिवासी इतनी कट्टरता से इस धर्म का पालन करने लगे कि अपनी देव परम्परा, अपने संस्कृति, संस्कार सबको छोड़कर पूर्ण रूप से विशेष धर्म के बन गये। इनके ऐसे व्यवहार से आदिवासी समाज के धार्मिक आस्था और विश्वास को गहरी चोट पहुंची।

इस धर्म विशेष के खिलाफ हिन्दू संगठन काम कर रहे हैं। इन संगठन से जुड़े आदिवासी अपने सामाजिक कार्य और देवकार्य में शामिल होते है, सहयोग करते है, मगर उस तरह से उन उत्सव या कार्य को नहीं करते जिस तरह आदिवासी करता है। इनके करने के तरीके में मूल भावना एवं आदिवासी अवधारणा कहीं दिखाई नहीं पड़ती। इनके रहन–सहन की प्रवृति भी आदिवासियों से अलग दिखने की है। ये आदिम समाज के देवी देवताओं से अधिक हिन्दू देवी देवताओं के प्रति आस्थावान होते हैं। इनके कर्मकाण्ड वैदिक रीति से सम्पन्न होते हैं। इससे गांव की सामाजिकता एवं सामुदायिक जीवन पद्धति नष्ट हो रही है।

इन सबके बीच एक ऐसा वर्ग है जो अपनी आदिम संस्कृति को बचाने के प्रयास में लगा है। गांव के लोगों को अपने धर्म की महत्ता एवं संवैधानिक बातों को समझाने लगे हैं, जिससे दूसरे धर्म में गये लोगों को जोड़ने का प्रयास किया जा रहा है। ऐसा नहीं है कि आदिवासी पहले से पढ़े लिखे नहीं है, आज से 20–30 वर्ष पूर्व भी बहुत लोग पढ़ लिख कर ऊंचे पदों में पहुंचे, पर पद मिलते ही अपनी रूढ़ि प्रथा के साथ अपने समाज को ही मूल गये। न ये लोग कभी समाज के बीच गये, न अपने परिवार को भेजते हैं। ये पूर्श तरह हिन्दूवादी संस्कृति के अधीन हो गये है। उस समय शिक्षित वर्ग द्वारा तरह हिन्दूवादी संस्कृति के अधीन हो गये है। उस समय शिक्षित वर्ग द्वारा अपनी रूढ़ी प्रथा का प्रशिक्षण दिया जाता तो आदिवासी समाज परसंस्कृति अपनी रूढ़ी प्रथा का प्रशिक्षण दिया जाता तो आदिवासी समाज परसंस्कृति प्रहण के चपेट में नहीं फंसता। आज जो लोग समाज को जागरूक कर रहे हैं संस्कृति का गांव—गांव प्रशिक्षण दे रहे हैं उनका यह वर्ग मजाक उड़ाता है संस्कृति का गांव—गांव प्रशिक्षण दे रहे हैं उनका यह वर्ग मजाक उड़ाता

संदर्भ ग्रन्थ

- उपाध्याय आनन्द, भारत में विलुप्त होती जनजाति, राज पब्लिकेशन्स, नयी दिल्ली (2019)
- उपाध्याय आनन्द कुमार, सामाजिक मानवशास्त्र, राज पब्लिकेशन्स, नयी दिल्ली (2019)
- तिवारी शिवकुमार, अबूझमाड़ : इतिहास एवं संस्कृति, जिला प्रशासन नारायणपुर, बस्तर (छ.ग.) (2018)।
- शुक्ल नवल, दण्डामी माड़िया, म.प्र. आदिवासी लोक कला परिषद् प्रकाशन (1989)।
- पानीग्राही रूद्रनारायण (सम्पादक प्रवीरकृष्ण), अतीत से आज तक, राजीव गांधी विकास मिशन बस्तर (1998)।
- जगदलपुरी लाला, बस्तर इतिहास एवं संस्कृति, तृतीय संस्करण, म.
 प्र. हिन्दी ग्रंथ अकादमी, भोपाल (2007)।
- पारी कुपार लिंगों गोण्डी पुनेम दर्शन 2003, मोती राम कंगाली।
- पत्रिका निचोड़ करीब से अबूझ बस्तर विशेषांक, जनवरी 2016।

Journal of Molecular Structure 1221 (2020) 128771

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

Synthesis, characterization, *ab initio* quantum chemical calculations and molecular docking studies of Se bearing phenoxo-bridged bimetallic Ni(II) complexes

Ashish Kumar Asatkar^a, Vinay K. Verma^{b,*}, Mridula Guin^b, Preeti Jain^{b,**}, R.J. Butcher^c

^a Department of Chemistry, Govt. Gundadhur P.G. College, Kondagaon, Chhattisgarh, 494226, India

^b Department of Chemistry and Biochemistry, SBSR, Sharda University, Greater Noida, 201306, India

^c Department of Inorganic and Structural Chemistry, Howard University, Washington, DC, 20059, USA

ARTICLE INFO

Article history: Received 1 February 2020 Received in revised form 21 June 2020 Accepted 25 June 2020 Available online 2 July 2020

Keywords: Selenium Schiff-base Bimetallic Ni(II) complex Electrochemistry Hartree-Fock calculation X-ray crystallography Molecular docking

ABSTRACT

In this paper, we report the reactivity of $Ni(dppe)Cl_2$; dppe = bis(diphenylphosphino)ethane, with phenol based selenium bearing macroacyclic Schiff bases, 2,6-bis({N-[2-(phenylselenato)ethyl]} benzimidoyl)-4-methylphenol and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol. The reaction of $Ni(dppe)Cl_2$ with these Se_2N_2O ligands in 1:1 Μ ratio vield CH₃)(PhCO)}₂Ni₂Cl₂], 2 as suggested by analytical and spectroscopic data of respective complexes and supported by single crystal X-ray crystallography of phenylseleno(ethyl)amine hydrochloride. In both of these bimetallic complexes, one arm of the ligand undergoes hydrolysis at the C=N bond and the 1,2bis(diphenylphosphenoethane) moiety of 1,2-bis(diphenylphosphino)ethanenickel(II) chloride is displaced by stronger chelating donors; nitrogen and oxygen of the ligands. Two molecules of the partially hydrolyzed ligand coordinate to two Ni(II) through azomethine nitrogen, benzoyl oxygen and the phenolic oxygen. The phenolic oxygen bridges the two Ni(II) ions. Each nickel is bonded to one chloride. Nickel adopts square pyramidal coordination geometry with *trans*-NiNO₃Cl core as evaluated by spectroscopic data and ab initio quantum chemical calculations at Hartree-Fock level. The cyclic voltammograms of complex 1 and 2 show metal centered two electron quasi-reversible redox processes. Molecular docking study of the ligands L_1H and L_2H and complexes 1 and 2 with DNA revealed noncovalent interaction and bind at active sites of B-DNA. The minimum calculated binding energy is -6.44 kcal/mol in complex 2.

© 2020 Published by Elsevier B.V.

1. Introduction

Multidentate ligands with variable donor functionalities (O, S, Se, Te and N) in their structural framework have been an active area of research for several years [1–4]. The coordination chemistry of organochalcogen compounds bearing such hybrid donor atoms is highly fascinating as they can provide insight into competitive coordination behavior between the 'hard' (N,O) and 'soft' (Se) donors and stabilize the metal centers in their low as well higher oxidation states [5,6]. Chemistry of such molecular framework is found to be

highly useful for functional group manipulations, asymmetric synthesis [7,8], ligand chemistry [9,10], material science [11–13] and biochemistry [14,15]. However, the instability of certain derivatives, difficulties associated with the purification, crystallization and synthetic methodologies have restricted their structural studies and applicability up to certain extent. Under such situations, the prediction of electronic structures by *ab initio* calculations has been found one of the most powerful techniques and utilized very frequently by the scientific community worldwide [16,17]. It helps in determining the molecular structures and spectral analysis in very supportive manner. The interaction of Schiff base metal complexes with virus/bacterial DNA has been extensively utilized to design newer bioactive molecules for their applications in biotechnology and medicines [18,19]. Transition metal complexes may interact with DNA in various binding modes; the most

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: vinaykumar.verma@sharda.ac.in (V.K. Verma), preeti.jain@ sharda.ac.in (P. Jain).

significant is non-covalent intercalation [20–23].

Khandelwal et al. have reported some phenol based cyclic and acyclic [24-26] Schiff bases and studied their reactivity with certain transition metal complexes. As a part of our ongoing research into design and synthesis of novel chalcogen bearing hybrid ligands, we have reported the synthesis of phenol-based Schiff bases $[C_6H_2(OH) (4-CH_3){(PhC = N(CH_2)_nXPh)}_2]$ (L1H, $X = Se, n = 2; L_2H, X = Se, n = 3; L_3H, X = Te, n = 2; L_4H, X = Te,$ n = 3) and their Cu(II), Zn(II), Hg(II) complexes [27,28]. Herein, we report the reactivity of Ni(II) metal ion with L₁H and L₂H ligands and study of their electronic structure by ab initio quantum chemical calculations and electrochemical property and DNA binding through molecular docking. The structures of L1H, L2H and their Ni(II) complexes **1** and **2** are shown in Fig. 1.

2. Experimental

2.1. Reagents

All the chemicals used were of reagent grade and purchased from Sigma Aldrich. Standard methods [29] for solvent purification were adopted and freshly distilled prior to use. The reactions were performed under argon atmosphere. Self-developed and own published method were used to synthesize the ligands L1H and L2H [22].

2.2. Physical measurements

Melting points of the compounds were recorded in capillary tubes and are reported as obtained. C, H and N analyses were carried out on a Carlo-Erba Model DP 200 analyzer. Quantitative estimation of Se and Ni were carried out on a Varian Atomic Absorption Spectrophotometer AA 240 FS. The halogens were estimated titrimetrically by Volhard's method. Conductance values were measured using a Century CC-601 digital conductivity meter in acetonitrile at 273 K. Electrospray ion mass spectra (ESIMS) were recorded on a WATERS-HAB 213 triple quadrupole mass spectrometer. The ESI capillary was set at 3.5 kV and the cone voltage was 40 V. Infrared spectra were recorded from 4000 to 400 cm^{-1} by a Shimadzu IR Prestige-21 FT spectrophotometer on a KBr disc. Electronic spectra were obtained by use of a PerkinElmer Lambda 35 UV-VIS spectrophotometer. The ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AMX-400 FT NMR spectrophotometer in CDCl₃; the chemical shifts were recorded relative to SiMe₄. Attempts were made to grow single crystals of all the isolated compounds. However, single crystals of only phenylselenatoethylamine hydrochloride could be obtained by slow evaporation of solvent from its solution in chloroform-hexane system. X-ray data were collected on an Oxford Diffraction Xcalibur Ruby Gemini diffractometer with Cu-K α radiation ($\lambda = 1.54178$ Å) at 295 K. The structure solution and refinements were made by SHELXS-97 and SHELXL-97 [30]. Absorption corrections were made by multi-scan CrysAlis PRO [31]. Non-hydrogen atoms were anisotropic and hydrogen positions were included in the riding mode. The SHELXLTL program [30] was used to prepare molecular graphics.

2.3. Synthesis

The macroacyclic Se₂N₂O ligands (L₁H and L₂H) were prepared and characterized as per the self-developed and reported method [22]. To prepare their Ni(II) complexes, the solution of ligand L_1H (0.680 g, 1.0 mmol)/L₂H (0.708 g, 1.0 mmol) in 70 mL purified methanol was added dropwise to the suspension of the Ni(dppe)Cl₂ [dppe = 1,2-bis(diphenylphosphino)ethane] (0.528 g, 1.0 mmol) in10 mL methanol under argon atmosphere. The reaction was carried out at room temperature while stirring vigorously. After stirring the reaction mixture for 12 h, reaction mixture was concentrated to 40 mL. The green precipitate thus obtained was filtered, washed several times with chloroform to remove the unreacted Ni(dppe)Cl₂ and the ligand and dried under vacuum. The characteristics of the complexes are given below:

$$[\{(PhC = NCH_2CH_2SePh)C_6H_2(O)(4 - CH_3)(PhCo)\}_2Ni1_2Cl_2];$$
(1)

Colour and state: green powder; yield: 0.37g (62%); m.p.: 170 °C (dec.). Anal. calc. for C₅₈H₄₈N₂O₄Se₂Ni₂Cl₂: C, 58.87; H, 4.09; N, 2.37; Ni, 9.92; Se, 13.35; Cl, 5.99%. Found: C, 57.92; H, 4.36; N, 2.61; Ni, 9.32; Se, 14.02; Cl, 6.16%. Positive ESIMS: *m/z* 1157 [**1**-{Cl}]⁺, 500. FTIR (KBr disc, cm⁻¹): 1614 ν (C=O), 1573 ν (C=C), 1527 ν (C=N),

Se

Fig. 1. Structures of ligand L1H, L2H and their Ni(II) complexes 1 and 2.

1247 ν(C–O), 517 ν(Ni–N), 465 ν(Ni–O_{phenolic}), 442 ν(Ni–O_{benzoylic}). UV–Vis (λ_{max} /nm, ε/M⁻¹cm⁻¹, CH₃CN): 261(13383), 339(2602), 406(1663). Λ_{M} (10⁻³ M, CH₃CN, 298 K): 22 Ω⁻¹cm²mol⁻¹.

$$[\{(PhC = NCH_2CH_2CH_2SePh)(C_6H_2(0)(4 - CH_3)(PhCo)\}_2Ni1_2Cl_2];$$
(2)

Colour and state: green powder; yield: 0.35 g (58%); m.p.: 172 °C (dec.). Anal. calc. for C₆₀H₅₂N₂O₄Se₂Ni₂Cl₂: C, 59.49; H, 4.33; N, 2.31; Ni, 9.69; Se, 13.05; Cl, 5.85%. Found: C, 58.71; H, 4.82; N, 2.96; Ni, 9.97; Se, 12.84; Cl, 5.97%. Positive ESIMS: m/z 1185 [**2**-(Cl)]⁺, 514. FTIR (KBr disc, cm⁻¹): 1614 ν (C=O), 1589 ν (C=C), 1527 ν (C=N), 1246 ν (C-O), 509 ν (Ni–N), 461 ν (Ni–O_{phenolic}), 419 ν (Ni–O_{benzoylic}). UV–Vis ($\lambda_{max}/nm, \ e/M^{-1}cm^{-1}$, CH₃CN): 256(13556), 337(2782), 409(2388). Λ_{M} (10⁻³ M, CH₃CN, 298 K): 28 $\Omega^{-1}cm^{2}mol^{-1}$.

2.4. Electrochemical study

Cyclic voltammetric (CV) measurements were carried out with the advanced electrochemical system, BASi Epsilon 828 and PAR-STAT 2253 instruments equipped with a three-electrode system. The micro-cell model BAS C3 Cell Stand and model KO264 consisted of a platinum working electrode, platinum wire as auxiliary electrode and a non-aqueous Ag/Ag⁺ reference electrode with 0.1 molL⁻¹ AgNO₃ in acetonitrile as filling solution. Tetrabutylammonium perchlorate (0.1 molL⁻¹ solution in CH₃CN) was used as the supporting electrolyte. Cyclic voltammograms with scan speeds of 100–500 mVs⁻¹ were run in 10⁻⁴ molL⁻¹ CH₃CN solution in a nitrogen atmosphere. Under these conditions, the ferrocenium/ferrocene (fc⁺/fc) couple shows a peak separation of 84 mV with E_{1/2} of +686 mV.

2.5. Computational details

2.5.1. Ab initio quantum chemical calculation

The structural elucidation of the complexes were studied by ab initio quantum chemical calculations using 6-31+G* + LANL2DZ (Los Alamos National Laboratory 2 Double-Zeta) and mixed basis set that utilizes Los Alamos Effective core potential on the transition metal Ni atom, while a Pople basis set was used for all other atoms at the Hartree-Fock (HF) level in restricted closed shell model. One set of polarization and diffuse function is added on hydrogen atoms for improved accuracy. HF method was used considering the large size of the system and limited computational resources availability. Although HF method lacks electron correlation, this method is good enough to produce approximate solution of electronic structure. LANL2DZ basis set is widely used for modeling transition metal atoms [32]. The mixed basis set was implemented by using GEN keyword in Gaussian 16 [33]. Analytic vibrational frequencies were calculated at the same level, as used for geometry optimizations to further ascertain the nature of minima. Absence of negative frequency suggested that both the structures are at global minimum.

2.5.2. Molecular docking study

Molecular docking studies were performed to find out the types of molecular interactions and to compare the binding affinity of ligand molecules and metal complexes to DNA biomolecule [19]. The docking studies were carried out with three dimensional crystal structure of B-DNA (PDB ID: 1BNA) dodecamer of the sequence d(CGCGAATTCGCG)₂ using AutoDock4.2 software which uses a free-energy scoring function based on the AMBER force field [34]. The Co-Crystal structure of 1BNA-Ca²⁺ was downloaded from RCSB database (www.rcsb.org/) with a resolution of 1.8 Å. After removing the attached Ca²⁺ ion, energy minimization on 1BNA was performed using SPDBV, version 4.10 (https://spdbv.vital-it.ch/) to obtain the lowest energy conformation. Further, Kolmann charges and polar hydrogen atoms were added to it. Active site of the receptor molecule was defined within the grid size of $40 \times 40 \times 40$ Å around the X, Y and Z coordinates 20.837, 14.423 and 14.910, respectively. ACD/ChemSketch software was used to draw the structure of ligands L₁H and L₂H and metal complexes 1 and 2. The initial parameters for Ni were set as r = 1.170 Å, q = +2.0 and van der Waals well depth of 0.418 kJ/mol [35]. The atomic parameters of Se were exchanged for those of sulphur in the docking calculations, as recommended by the Autodock developers since it is not parameterised within the Auto dock force field. Such a change seems reasonable due to their similarity of van der Waals radii (1.9 Å for Se and 1.8 for S) and electronegativities (2.55 for Se and 2.58 for S, Pauling scale) [36]. The partial charges of ligand and metal complexes were further modified by using the ADT package (version 1.4.6), so that the charges of the nonpolar hydrogen atoms would be assigned to the atom to which the hydrogen is attached.

Docking experiments were performed on the energy minimized DNA molecule and all test molecules by applying Lamarckian search algorithm. All rotatable bonds within the test molecules were allowed to rotate freely and the receptor was considered rigid [34] in order to predict their best fit orientation of binding to DNA helix [21]. To visualize the type of interactions between DNA and test molecules, CHIMERA molecular graphics programme [37] and Ligplot + version v.1.4.5 software [38] were used.

3. Results and discussion

3.1. Characterization of metal complexes

The Ni(II) complexes **1** and **2**, synthesized by reacting Ni(dppe) Cl₂ with **L**₁**H** and **L**₂**H**, respectively in 1:1 M ratio, were found to have composition $C_{58}H_{48}Se_2O_4N_2Ni_2Cl_2$ (**1**) and $C_{60}H_{52}Se_2O_4N_2$. Ni₂Cl₂ (**2**). Analytical data suggested that during the reaction 1,2bis(diphenylphosphinoethane) is displaced from Ni(dppe)Cl₂ and hydrolysis of one arm of the ligand at C==N bond occurs. These complexes are moderately soluble in chloroform, dichloromethane, acetonitrile and methanol. The complexes have been characterized by elemental analyses, UV–Vis, conductance measurement, ESIMS, IR and cyclic voltammetry. The structure of the complexes was evaluated by *ab initio* quantum chemical calculations at the Hartree-Fock level.

3.1.1. Molar conductivity measurements

Molar conductance values in acetonitrile solutions are $22 \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$ and $28 \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$, respectively, which suggest their non-electrolytic nature and eliminate the possibility of the products to be ionic [28].

3.1.2. Electronic spectral study

Electronic absorption spectra of the complexes **1** and **2** in acetonitrile show bands at 339 nm and 337 nm, respectively, which can be assigned to the $\pi \rightarrow \pi^*$ transitions for phenyl rings. The weak bands at 406 nm in both spectra are attributed to the $n \rightarrow \pi^*$

transitions in ligand moieties. Surprisingly, no d-d transition was observed in the spectra even when recorded in different solvents like acetonitrile and DMF solutions.

3.1.3. Mass spectral analysis

ESI mass spectra of the complexes 1 and 2 do not show the molecular ion peak for the complexes but presence of signal at m/z1157 in the spectrum of **1** and 1185 in the spectrum of **2**, reveal the formation of $[\{C_6H_2(O) (4-CH_3) (PhC = NCH_2CH_2SePh)\}$ (PhC $O)_{2}Ni_{2}Cl]^{+}$ and $[{C_6H_2(0)}]$ $(4-CH_3)$ = $(PhC = NCH_2CH_2CH_2SePh)$ $(PhC = O)_2Ni_2Cl]^+$ ions, respectively, which are devoid of a chloride ion from the molecular ion and diphenylphosphenoethane moiety from metal ion source. The base peaks observed at m/z 500 and 514 in the spectra of **1** and **2** are assigned to the fragments $[C_6H_2(O) (4-CH_3) (PhC = NCH_2CH_2SePh)$ $(PhC = 0)^{+}$ and $[C_{6}H_{2}(0) (4-CH_{3}) (PhC = NCH_{2}CH_{2}CH_{2}SePh)$ (PhC = O)]⁺, respectively.

3.1.4. Infra-red spectral analysis

The disappearance of bands of $\nu(O-H)$ stretching at around 3500 cm^{-1} in the IR spectra of complexes **1** and **2** suggests involvement of phenolic proton with the chloride ion of the Ni(dppe)Cl₂ to form hydrochloric acid and thereby binding of the phenolic O with Ni(II) ion.Spectra of both the complexes 1 and 2 show ν (C=N) stretching frequencies (about 1527 cm¹) which are shifted to lower frequency by ~60 cm^{-1} with respect to those of the corresponding free ligands (about 1597 cm⁻¹). The shift to lower frequency side in this band is due to the decrease in electron density on the nitrogen atom of the imino groups which suggests coordination of imino nitrogen atoms with Ni(II) ion. Further, the appearance of a new band at around 1614 cm^{-1} in both spectra are attributed to ν (C=O), formed due to the hydrolysis of one imine group of the ligands. In several cases the original multidentate Schiff-base ligands present in the mother solution hydrolyze during the complexation reactions, resulting in the formation of partially hydrolyzed species with the decrease in their denticity [39–45]. Since v(C=0) bands are shifted towards red frequency side by the order of ~44 cm⁻¹ as compared to 4-methyl-2,6-dibenzoylphenol (1658 cm⁻¹) suggest the coordination of benzoyl O with the Ni(II) ion. The release of HCl and thus the partial hydrolysis of the ligand during the process of complex formation between ligand L1H and Ni(dppe)Cl₂ is confirmed by the isolation of phenylseleno(ethyl)

Fig. 2. ORTEP diagram of phenylseleno(ethyl)amine hydrochloride, drawn at the 50% probability level.

amine hydrochloride and its single crystal X-ray crystallography. Both the complexes exhibit the ν (Ni–N) stretch between 509 and 517 cm⁻¹ as a weak band. The bands around 465 cm⁻¹ are attributed to ν (Ni–O_{phenolic}) vibrations whereas those between 419 and 442 cm⁻¹ are assigned to ν (Ni–O_{benzoylic}) vibrations [46].

3.1.5. NMR spectral analysis

¹H NMR spectra of the complexes in CDCl₃ are found to be extremely broad and featureless up to 17 ppm suggesting their paramagnetic nature [30]. Further, the ³¹P NMR spectra of both the complexes do not show any signal even up to 250 ppm. Surprisingly, ³¹P NMR spectra of filtrate obtained after separation of complexes do show the presence of a signal centered at 33.349 ppm which suggest that dppe of Ni(dppe)Cl₂ is separated out as dppeO₂. This may be due to the fact that two P atoms of dppe which chelate Ni(II) ion in Ni(dppe)Cl₂ are replaced by a chelating system of ligands consisting of imino N, phenolic O and benzoyl O. This displacement can be justified on the basis of 'hard' nature of Ni(II) preferring chelation with (N, O) over (P, P).

3.1.6. X-ray crystallography

Phenylseleno(ethyl)amine hydrochloride, crystallized out from its chloroform solution, has been confirmed by single crystal X-ray study (CCDC 1980062). Its ORTEP diagram is shown in Fig. 2. X-ray diffraction determination shows that the compound crystallizes in a P 1 21/n 1 space group and there are four ion pair units in the unit cell. The Se–C(1) distance [1.925(2) Å] is slightly higher than the sum of the Pauling single bond covalent radii for selenium (1.17 Å) and sp² hybridized carbon (0.74 Å). The Se–C(7) bond distance [1.959(2) Å] is, however, longer than Se–C(1) distance. This is due to the fact that radius of sp³ carbon is larger than that of the sp² carbon. Packing diagram of the compound is shown in Fig. S1. Data collection parameters are given in Table 1. Selected bond lengths and angles are listed in Table 2.

3.1.7. Quantum chemical study

Based on various physicochemical characterization, it is concluded that the complexes are bimetallic dimers where two partial hydrolyzed ligands coordinate with two Ni(II) ions via N,O,O donors in trans fashion and a Cl atom occupies axial position of each metal center forming square pyramidal geometry. Since the complexes 1 and 2 could not be crystallized, their structures were optimized by ab initio quantum chemical calculation at the Hartree-Fock level. Based on the analytical data of isolated complexes 1 and 2, the structures were assigned and optimized as shown in Figs. 3 and 4, respectively. Calculated selected bond lengths, bond angles and dihedral angles are listed in Table S1 and Table S2. Analytical data of the complexes 1 and 2 in solid state suggest their stabilization in dimeric form with each having center of symmetry lies in the center of Ni₂O₂ core. The two equivalent parts of coordination unit *viz.* [{ $C_6H_2(O) (4-CH_3) (PhC = N(CH_2)_nSePh) (PhC = O)$ }NiCl]; n = 2, 3, combine via bridging of phenolic oxygen. For Ni, NOOO donor set forms the distorted basal plan of square pyramid, whereas the Cl occupies the axial position. Both of the basal planes of square pyramids are distorted by different amount which is 8.418° and 9.242° (dihedral angle) in complex 1 while it is 10.626° and 9.917° in complex 2. The distortion is slightly more in complex **2** as compared to complex **1** which is even more than the reported $Ni_2(\mu$ -phenoxide)₂ complex [47]. The selenium atom of each ligand in complex 1 lies far from Ni (Se…Ni) and seating at the distance of 5.174 Å (5.407 Å) which is 5.431 Å (6.409 Å) in complex 2 and left

Table	1
-------	---

Crystal data and structure refinement for phenylseleno(ethyl)amine hydrochloride.

Empirical formula	C ₈ H ₁₂ Cl N Se	
Formula weight	236.60	
Temperature	295(2) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 5.73421(10) Å	$lpha=90^\circ$
	b = 7.82184(13) Å	$\beta = 96.4586(17)^{\circ}$
	c = 22.1658(4) Å	$\gamma=90^{\circ}$
Volume	987.87(3) Å ³	
Z	4	
Density (calculated)	1.591 Mg/m ³	
Absorption coefficient	7.143 mm^{-1}	
F(000)	472	
Crystal size	$0.46 \text{ x } 0.42 \times 0.15 \text{ mm}^3$	
Theta range for data collection	6.00–77.48°	
Index ranges	$-5 \le h <= 7, -9 \le k <= 9, -27 \le l <= 27$	
Reflections collected	8643	
Independent reflections	2088 [$R(int) = 0.0283$]	
Completeness to theta $= 67.50$	99.8%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.10834	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	2088/0/102	
Goodness-of-fit on F ²	1.070	
Final R indices [I > 2sigma(I)]	R1 = 0.0276, $wR2 = 0.0763$	
R indices (all data)	R1 = 0.0281, $wR2 = 0.0767$	
Extinction coefficient	0.0010(3)	
Largest diff. peak and hole	0.427 and -0.250 e.Å ⁻³	

uncoordinated. The trans Ni-N bond distances are of almost equal length (1.992 and 1.997 Å) in complex **1** while in complex **2**, the bond lengths are slightly longer (2.022 Å and 2.059 Å). However, Ni–O_(benzovl) being trans to each other are appreciably different (1.973 and 1.938 Å) and shorter than Ni-N. All the four Ni-O_(phenoxy) distances are unequal (1.944, 1.954, 1.949 and 1.917 Å in complex **1** and 1.945, 1.952, 1.976 and 1.897 Å in complex **2**); suggesting the distorted geometry. The Ni77-Ni78 separation in both the complexes 1 and 2 is slightly different (2.888 Å (1) and 2.963 Å(2)) which is appreciably longer than van der Waal's radii of Ni, suggests the absence of metal-metal bond. However, it is appreciably shorter than that of reported phenoxo-bridged dinuclear Ni(II) complexes [47]. The optimized molecular geometry is completely free from intramolecular interaction. Ni77-079-Ni78 and Ni77–O80–Ni78 angles in complexes 1 and 2 are 95.472°. 96.872° and 97.272°, 96.935°, respectively which are slightly shorter than reported $Ni_2(\mu$ -phenoxide)₂ complex [47]. Although

Table 2

Selected bond lengths [Å] and angles [°] for phenylseleno(ethyl)amine hydrochloride.

Se-C(1)	1.925(2)	N-H(0A)	0.8900
Se-C(1) Se-C(7) N-C(8) C(7)-C(8)	1.959(2) 1.959(2) 1.491(3) 1.509(3)	N-(0A) N-H(0B) N-H(0C)	0.8900 0.8900 0.8900
C(1)-Se-C(7) C(6)-C(1)-Se C(2)-C(1)-Se C(8)-C(7)-Se N-C(8)-C(7) Se-C(7)-H(7B) 108.7	97.28(9) 118.92(17) 120.58(15) 114.03(14) 112.03(17) 108.7	C(8)-N-H(0A) C(8)-N-H(0B) C(8)-N-H(0C) H(0A)-N-H(0B) H(0A)-N-H(0C) H(0B)-N-H(0C)	109.5 109.5 109.5 109.5 109.5 109.5

the six and four coordination complexes of nickel are dominating over five coordination complexes but the square pyramidal complexes of Ni(II) ion are also well documented [48–51]. The calculated structural parameters are closely matching with the similar kind of reported complexes [28]. The predicted square pyramidal geometry and the calculated parameters of the complexes **1** and **2** commensurate well with the experimentally established geometry [28], suggesting HF method as one of the adequate methods for describing the structure of the bimetallic Ni(II) complexes. Although there are certain discrepancies which can be understood as the experimental data is acquired in solid state whereas the calculated data corresponds for the gas phase.

3.2. Electrochemical study

The electrochemical properties of the complexes have been investigated by cyclic voltammetry in 0.1 M [NBu₄][ClO₄] in CH₃CN solution with 100–500 mV/s scan rates. The cyclic voltammograms of **1** and **2** show metal centered processes. The complexes uniformly exhibit stepwise two electron oxidation and reduction peaks in CH₃CN solution, due to successive oxidations and reductions of the two Ni(II) ions *i.e.*:

Fig. 3. Structure of complex 1 optimized at HF level.

Fig. 4. Structure of complex 2 optimized at HF level.

The electron transfer reactions are quasi-reversible in nature as evident by ΔE_p and I_{pa}/I_{pc} values. The oxidation potentials of complex **1** are more positive than those of complex **2** and the

reduction potentials are more negative than those of complex **2**. The large differences between the redox potentials in both the cyclic voltammograms indicate the considerable stability of mixed-valence species as evident by significantly high comproportionation constants, K_c, of 6.5×10^9 V and 1.2×10^{13} V for complexes **1** and **2**, respectively at 100 mV/s [52]. The comproportionation constants (or sometimes referred as conproportionation constants) are calculated using the formula K_c = $10^{(\Delta E/0.059)}$ V. The representative CVs for the behavior of **1** and **2** are shown in Fig. 5 and results are summarized in Table S3.

3.3. Molecular docking study

Molecular docking is one of the most promising tools in the interactional studies between DNA and drug-like compounds at molecular level [53,54]. Molecular docking studies of both the ligands L₁H, L₂H and complexes 1 and 2 were performed to predict the mode of interaction and the preferred molecular orientation between the novel molecules and the target DNA. The ligands and complexes show affinity to the adenine-thiamine-guanine (A-T-G) rich region of B-DNA stabilized by non-covalent interactions. The most energetically favorable docked structure of the ligands L1H and L₂H and complexes 1 and 2 with the receptor DNA is shown in Fig. 6. Both the complexes showed comparable binding affinity which is higher in magnitude than that for the ligands L₁H and L₂H. The ligands and complexes bind through hydrophobic interaction [55] (Figs. S2 and S3) and the binding affinity with receptor DNA molecule increases with increase in the hydrophobicity in ligand L_2H (-4.41 kcal/mol) and complex 2 (-6.44 kcal/mol) as compare to ligand L_1H (-3.13 kcal/mol) and complex 1 (-6.32 kcal/mol) as shown in Table 3. Ligand L₂H additionally shows intermolecular hydrogen bonding between its N atom and da6 DNA residue with a bond length of 3.183 Å. It is evident from the docked results that both the complexes show better binding affinity to the receptor B-DNA than their corresponding ligands due to the increased hydrophobicity in the complex molecules after coordination of ligand with metal ion. This molecular docking study describes the inhibitory potential of synthesized metal complexes and has significant implications for the development of new DNA inhibitors.

4. Conclusions

Reactions of L₁H and L₂H with Ni(dppe)Cl₂ resulted into the formation of bimetallic complexes with partial hydrolysis of ligand at C=N bond liberating phenylseleno- (alkyl)aminehydrochloride. Both the complexes 1 and 2 show two molecules of partially hydrolyzed ligand bonded to two Ni(II) ions through imino N, phenolic O and benzoyl O with phenolic O bridging two metals and leaving the selenium uncoordinated. Each Ni(II) is further terminally bonded with a chlorine atom. Ni(II) in both the complexes 1 and 2 is five coordinated with square-pyramidal geometry and having O₃NCl coordination sphere. However, during the reaction 1,2-bis(diphenylphosphinoethane) moiety is displaced from Ni(dppe)Cl₂ and a chloride ion combines with phenolic proton to form HCl. This is due to the fact that Ni(II) being 'hard' nature preferring chelation with (N, O) over (P, P). Both the complexes show quasi-reversible and metal centered successive oxidations and reductions of the two Ni(II) ions which are considerably stable in mixed valence state. Based on the analytical data, the structure of

Fig. 5. Cyclic voltammograms of 0.1 mM solutions of complexes 1 (a) and2(b) in CH₃CN/0.1 M NBu₄ClO₄ at platinum electrode vs Ag/0.1 M AgNO₃ at 200 mV/s scan rate.

Fig. 6. Energetically favorable docked structure of the ligands L_1H (a) and L_2H (b), and complexes 1 (c) and 2 (d) with the receptor 1BNA.

Table 3		
Summarized interacting receptor residue,	, interaction mode and binding free energ	y.

	Compound name	Target Receptor molecule	Interacting receptor residues	Type of interactions	Binding free energy (kcal/mol)
S. No.					
1	L1H	1BNA	da5, da6, da18, dt19, dg4	Hydrophobic	-3.13
2	L ₂ H	1BNA	da5, da6, dg4, da18, dt19	Hydrophobic	-4.41
			da6	H-bonding	
3	Complex 1	1BNA	da5, da6,da18, dt7, dg4	Hydrophobic	-6.32
4	Complex 2	1BNA	da5, da6,da18, dt7, dt4	Hydrophobic	-6.44

the complexes is optimized following the *ab initio* quantum chemical calculations at HF level. The study revealed that HF method may be one of the adequate method for describing the structure of the bimetallic Ni(II) complexes. The investigated ligands and complexes bind at the active sites of B-DNA using weak non-covalent interactions and the minimum binding energy of the docked complex **2** with B-DNA was found to be -6.44 kcal/mol. On the idea of experimental and computational effects of the investigated ligands and complexes, these molecular systems may be beneficial for the design and synthesis of new materials for further study in coordination chemistry and bioinorganic medicinal fields.

CRediT authorship contribution statement

Ashish Kumar Asatkar: Validation, Investigation. Vinay K. Verma: Supervision. Mridula Guin: Software. Preeti Jain: Software. R.J. Butcher: Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We are thankful to Department of chemistry and biochemistry, Sharda University for providing computational facility, Prof. B. L. Khandelwal for helpful discussions, Dr. Sandeep Verma, IIT Kanpur for recording mass spectra, Prof. C. L. Khetrapal, CBMR, Lucknow for Multinuclear NMR spectra and Dr. S. K. Gupta, Jiwaji University, Gwalior for recording IR and UV–Vis. spectra. Authors are also thankful to the reviewers for their constructive suggestions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.molstruc.2020.128771.

References

- M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, Molecular paneling via coordination, Chem. Commun. (2001) 509–518.
- [2] C.J. Kuehl, Y.K. Kryschenko, U. Radhakrishnan, S.R. Seidel, S.D. Huang, P.J. Stang, Self-assembly of nanoscopic coordination cages of D3h symmetry, Proc. Natl. Acad. Sci. Unit. States Am. 99 (2002) 4932–4936.
- [3] Z. Ding, S.K. Bux, D.J. King, F.L. Chang, T.-H. Chen, S.-C. Huang, R.B. Kaner, Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride, J. Mater. Chem. 19 (2009) 2588–2592.
- [4] A. Molter, Fabian Mohr, Gold complexes containing organoselenium and organotellurium ligands, Coord. Chem. Rev. 254 (2010) 19–45.
- [5] P.G. Jones, M.C.R. de Arellano, Synthesis of aryl selenides using arylmercurials. Cyclopalladation of Se(R)Ph [R= C₆H₃(N [double bond, length half m-dash] NC₆H₄Me-4')-2,Me-5]. Crystal structures of Se₂R₂ and [Pd{C₆H₃[N[double bond, length half m-dash] NC₆H₃(SePh)-2', Me-4']-2, Me-5]Cl], J. Chem. Soc., Dalton Trans. (1996) 2713–2717.
- [6] C.O. Kienitz, C. Thöne, P.G. Jones, Coordination chemistry of 2,2'-dipyridyl diselenide: X-ray crystal structures of PySeSePy, [Zn(PySeSePy) Cl₂],

 $\label{eq:constraint} \begin{array}{l} [(PySeSePy)Hg(C_6F_5)_2], [Mo(SePy)_2(CO)_3], [W(SePy)_2(CO)_3] and [Fe(SePy)_2(CO)_2] (PySeSePy = C_5H_4NSeSeC_5H_4N; SePy=[C_5H_4N(2-Se)-N, Se]), Inorg. Chem. 35 (1996) 3990-3997. \end{array}$

- [7] T. Sohn, M.J. Kim, D. Kim, Asymmetric total synthesis of trilobacin via organoselenium-mediated oxonium ion formation/SiO₂-promoted fragmentation, J. Am. Chem. Soc. 132 (2010) 12226–12227.
- [8] B. Kim, M. Lee, M.J. Kim, H. Lee, S. Kim, D. Kim, M. Koh, S.B. Park, K.J. Shin, Biomimetic asymmetric total synthesis of (–)-laurefucin via an organoselenium-mediated intramolecular hydroxyetherification, J. Am. Chem. Soc, 130 (2008) 16807–16811.
- [9] D.K. Dutta, B. Deb, Potential rhodium and ruthenium carbonyl complexes of phosphine-chalcogen (PO/S/Se) donor ligands and catalytic applications, Coord. Chem. Rev. 255 (2011) 1686–1712.
- [10] R.L. Davidovich, V. Stavila, K.H. Whitmire, Stereochemistry of lead (II) complexes containing sulfur and selenium donor atom ligands, Coord. Chem. Rev. 254 (2010) 2193–2226.
- [11] V.K. Jain, G. Kedarnath, Applications of metal selenium/tellurium compounds in materials science, Physical Sciences Reviews 4 (2018), 20170127.
- [12] E.A. Turner, H. Rösner, Y. Huang, J.F. Corrigan, Accessing binary CdE [E= S, Se, Te] and ternary Cd_xZn_{1-x}E [E= S, Se] materials in mesoporous architectures using silylated-chalcogen reagents, J. Phys. Chem. C 111 (2007) 7319–7329.
- [13] V. Protasenko, D. Bacinello, M. Kuno, Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires, J. Phys. Chem. B 110 (2006) 25322–25331.
- [14] O.A. Levander, Progress in establishing human nutritional requirements and dietary recommendations for selenium, in: Selenium in Biology and Medicine, Springer, Berlin, Heidelberg, 1989, pp. 205–209.
- [15] B.K. Sarma, G. Mugesh, Thiol cofactors for selenoenzymes and their synthetic mimics, Org. Biomol. Chem. 6 (2008) 965–974.
- [16] A.A. Tsaturyan, A.P. Budnyk, C. Ramalingan, DFT study of the CNS ligand effect on the geometry, spin-state and absorption spectrum in ruthenium, iron and cobalt quaterpyridine complexes, ACS Omega 4 (2019) 10991–11003.
- [17] B.B. Mahapatra, R. Ranjan Mishra, A.K. Sarangi, Synthesis, characterisation, XRD, molecular modelling and potential antibacterial studies of Co (II), Ni (II), Cu (II), Zn (II), Cd (II) and Hg (II) complexes with bidentateazodye ligand, Journal of Saudi Chemical Society 20 (2016) 635–643.
- [18] R. Fekri, M. Salehi, A. Asadi, M. Kubicki, DNA/BSA interaction, bio-activity, molecular docking simulation study and electrochemical properties of hydrazone Schiff base derived Cu (II)/Ni (II) metal complexes: influence of the nuclearity and metal ions, Polyhedron 128 (2017) 175–187.
- [19] N. Raman, S. Sobha, L. Mitu Synthesis, Structure elucidation, DNA interaction, biological evaluation and molecular docking of an isatin-derived tyraminebidentate Schiff base and its metal complexes, Monatsheftefür Chemie-Chemical Monthly 143 (2012) 1019–1030.
- [20] Pulimamidi R. Reddy, R. Nomula, R. Pallepogu, H. Shaik, Picolinic acid based Cu (II) complexes with heterocyclic bases–crystal structure, DNA binding and cleavage studies, Eur. J. Med. Chem. 79 (2014) 117–127.
- [21] S.U. Rehman, T. Sarwar, M.A. Husain, H.M. Ishqi, M. Tabish, Studying noncovalent drug–DNA interactions, Arch. Biochem. Biophys. 576 (2015) 49–60.
- [22] V.K. Verma, A.K. Asatkar, T.A. Jain, S.K. Tripathi, R. Singh, P.B. Hitchcock, S. Nigam, S.K. Gupta, Synthesis, structure and DNA binding studies of mononuclear copper (II) complexes with mixed donor macroacyclic ligands, 2,6-bis({N-[2&3-(phenylselenato)alky]]benzimidoyl)-4-methylphenol, Polyhedron 28 (2009) 2591–2598.
- [23] A.K. Asatkar, S. Nair, V.K. Verma, C.S. Verma, T.A. Jain, R. Singh, S.K. Gupta, R.J. Butcher, Syntheses of phenoxo-bridged Zn (II) and metallamacrocyclic Hg (II) complexes of organochalcogen (Se, Te) substituted Schiff-bases: structure and DNA-binding studies of Zn (II) complexes, J. Coord. Chem. 65 (2012) 28–47.
- [24] M. Nasim, S.K. Tripathi, S.B. Mishra, B.L. Khandelwal, Organoselenium/tellurium-bearing macroacyclic and cyclic ligand systems and their complexation reactions, Phosphorus, Sulfur Silicon Relat. Elem. 180 (2005) 1019–1034.
- [25] J.D. Singh, M.D. Milton, G. Bhalla, B.L. Khandelwal, P. Kumar, T.P. Singh, R.J. Butcher, Design, synthesis and structural aspects of acyclic N3E2 (E= Se or Te) type donors and its complexes with Group 12 metals, Phosphorus, Sulfur Silicon Relat, Elem. 172 (2001) 223–230.
- [26] S.K. Tripathi, B.L. Khandelwal, S.K. Gupta, A new family of chalcogen bearing macrocycles: synthesis and characterization of N₄O₂E₂ (E= Se, Te) type compounds, Phosphorus, Sulfur Silicon Relat. Elem. 177 (2002) 2285–2293.
- [27] M.D. Milton, J.D. Singh, R.J. Butcher, Synthesis of β-ketoenamine donors having O, N, Se/Te donor functionalities and their reaction chemistry with Pd

(II) and Pt (II) metal ions, Tetrahedron Lett. 45 (2004) 6745-6747.

- [28] S. Nair, V.K. Verma, C.S. Verma, T.A. Jain, S.K. Tripathi, R. Singh, S.K. Gupta, R.J. Butcher, Synthesis and structure of mononuclear copper (II) complexes with acyclic Schiff-base ligands containing organotellurium substituents: a comparative study with selenium analogs, J. Coord. Chem. 63 (2010) 4088–4103.
- [29] D.D. Perrin, W.I.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, 1966.
- [30] G.M. Sheldrick, A short history of SHELX, ActaCrystallographica Section A: Foundations of Crystallography 64 (2008) 112–122.
- [31] C.C.D. CrysAlis, Oxford Diffraction Ltd, 2007.
- [32] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270–283.
- [33] Gaussian 16, Revision C. 01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian, Inc., 2016. Wallingford CT.
- [34] J. G.M. Morris, R. Huey, A. Olson, Using autodock for ligand-receptor docking Current protocols in bioinformatics 24 (2008) 8–14.
- [35] S. Sangeeta, K. Ahmad, N. Noorussabah, S. Bharti, M.K. Mishra, S.R. Sharma, M. Choudhary, Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni (II) and Cu (II) Schiff base complexes, J. Mol. Struct. 1156 (2018) 1–11.
- [36] I.P. Victoria, O. Boutureira, T.D. Claridge, B.G. Davis, Glycosyl diselenides as lectin ligands detectable by NMR in biofluids, Chem. Commun. 51 (2015) 12208–12211.
- [37] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, E C, T.E. Ferrin, UCSF Chimera—a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605–1612.
- [38] R.A. Laskowski, M.B. Swindells LigPlot+, Multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model. 51 (2011) 2778–2786.
- [39] D.E. Fenton, G.P. Westwood, A. Bashall, M. McPartlin, I.J. Scowen, Partial hydrolysis of a Schiff-base tripodal ligand induced by copper (II) salts: crystal structure of the product from reaction with copper (II) perchlorate, J. Chem. Soc., Dalton Trans. (1994) 2213–2214.
- [40] F. Avecilla, P. Adão, I. Correia, J.C. Pessoa, Influence of polydentate ligands in the structure of dinuclear vanadium compounds, Pure Appl. Chem. 81 (2009) 1297–1311.
- [41] S. Naiya, B. Sarkar, Y. Song, S. Ianelli, M. Gb Drew, A. Ghosh, Carbonyl compound dependent hydrolysis of mono-condensed Schiff bases: a trinuclear

Schiff base complex and a mononuclear mixed-ligand ternary complex of copper (II), Inorg, Chim. Acta. 363 (2010) 2488–2495.

- [42] S. Chattopadhyay, P. Chakraborty, M. Gb Drew, A. Ghosh, Nickel (II) complexes of terdentate or symmetrical tetradentate Schiff bases: evidence of the influence of the counter anions in the hydrolysis of the imine bond in Schiff base complexes, Inorg, Chim. Acta. 362 (2009) 502–508.
- [43] S. Im Paris, Ü.A. Laskay, S. Liang, O. Pavlyuk, S. Tschirschwitz, P. Lönnecke, M.C. McMills, et al., Manganese (II) complexes of di-2-pyridinylmethylene-1,2-diiminedi-Schiff base ligands: structures and reactivity, Inorg. Chim. Acta. 363 (2010) 3390–3398.
- [44] G.-J.M. Meppelder, T.P. Spaniol, J. Okuda, A binaphtolate titanium complex featuring a linear tetradentate [OSSO]-bis (phenolato) ligand: synthesis and partial hydrolysis to a homochiraldinuclear complex, J. Organomet. Chem. 691 (2006) 3206–3211.
- [45] M. Czaun, S.M. Nelana, I.A. Guzei, C. Hasselgren, M. Håkansson, S. Jagner, G. Lisensky, J. Darkwa, E. Nordlander, An investigation of Cu (II) and Ni (II)catalysed hydrolysis of (di) imines, Inorg. Chim. Acta. 363 (2010) 3102–3112.
- [46] L. McAfee, Infrared and Raman spectra of inorganic and coordination compounds. Part A: theory and applications in inorganic chemistry; Part B: application in coordination, organometallic and bioinorganic chemistry, (Nakamoto, Kazuo), J. Chem. Educ. 77 (2000) 1122.
- [47] H.-S. Ke, L. Zhao, J. Tang, Synthesis, crystal structure and magnetic properties of a phenoxo-bridged dinuclear nickel (II) complex, J. Coord. Chem. 64 (2011) 2020–2027.
- [48] X. Zhang, B. Liu, A. Liu, W. Xie, W. Chen, Steric bulkiness-dependent structural diversity in nickel (II) complexes of N-heterocyclic carbenes: synthesis and structural characterization of tetra-, penta- and hexacoordinate nickel complexes, Organometallics 28 (2009) 1336–1349.
- [49] M. Veith, K. Valtchev, V. Huch, Tetraalkoxyaluminates of nickel (II), Copper (II) and copper (I), Inorg. Chem. 47 (2008) 1204–1217.
- [50] D.C. Fox, A.T. Fiedler, H.L. Halfen, T.C. Brunold, J.A. Halfen, Electronic structure control of the nucleophilicity of transition Metal– thiolate complexes: an experimental and theoretical study, J. Am. Chem. Soc. 126 (2004) 7627–7638.
- [51] A. Kermagoret, P. Braunstein, Mono-and dinuclear nickel complexes with phosphino-, phosphinito- and phosphonitopyridine ligands: synthesis, structures and catalytic oligomerization of ethylene, Organometallics 27 (2008) 88–99.
- [52] P. Ghosh, P. Mondal, R. Ray, A. Das, S. Bag, S.M. Mobin, G.K. Lahiri, Significant influence of coligands toward varying coordination modes of 2,2'-Bipyridine-3,3'-diol in ruthenium complexes, Inorg. Chem. 53 (2014) 6094–6106.
- [53] J. Fan, A. Fu, L. Zhang, Progress in molecular docking, Quantitative Biology 7 (2019) 83–89.
- [54] A.K. Asatkar, M. Tripathi, S. Panda, R. Pande, S.S. Zade, Cu(I) complexes of bis(methyl)(thia/selena) salen ligands: synthesis, characterization, redox behavior and DNA binding studies, Spectrochim. Acta Mol. Biomol. Spectrosc. 171 (2017) 18–24.
- [55] P. Arthi, S. Shobana, P. Srinivasan, L. Mitu, A. Kalilur Rahiman Synthesis, characterization, biological evaluation and docking studies of macrocyclic binuclear manganese (II) complexes containing 3, 5-dinitrobenzoyl pendant arms, Spectrochim. Acta Mol. Biomol. Spectrosc. 143 (2015) 49–58.

Experimental and computational studies on hydroxamic acids as environmental friendly chelating corrosion inhibitors for mild steel in aqueous acidic medium

Dakeshwar Kumar Verma, Akram Al Fantazi, Chandrabhan Verma, Fahmida Khan, Ashish Asatkar, Chaudhery Mustansar Hussain, Eno E. Ebenso

PII:	80167-7322(20)32502-2
DOI:	https://doi.org/10.1016/j.molliq.2020.113651
Reference:	MOLLIQ 113651
To appear in:	Journal of Molecular Liquids
Received date:	21 April 2020
Revised date:	14 June 2020
Accepted date:	19 June 2020

Please cite this article as: D.K. Verma, A. Al Fantazi, C. Verma, et al., Experimental and computational studies on hydroxamic acids as environmental friendly chelating corrosion inhibitors for mild steel in aqueous acidic medium, *Journal of Molecular Liquids* (2020), https://doi.org/10.1016/j.molliq.2020.113651

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

Experimental and computational studies on hydroxamic acids as environmental friendly chelating corrosion inhibitors for mild steel in aqueous acidic medium

Dakeshwar Kumar Verma^a, Akram Al Fantazi^b, Chandrabhan Verma^c*, Fahmida Khan^d,

Ashish Asatkar^e, Chaudhery Mustansar Hussain^f and Eno E. Ebenso^g*

^aDepartment of Chemistry, Govt. Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh, INDIA, 491441

^bDepartment of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates

^cCenter of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

^dDepartment of Chemistry, National Institute of Technology Raipur, Raipur 492010, CG, India

^eDepartment of Chemistry, Govt. Gundadhur Postgraduate College, Kondagaon, Chhattisgarh, INDIA

^f Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J 07102, USA

⁸Department of Chemistry, School of Chemical and Physical Sciences and Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa

Corresponding Address: *chandraverma.rs.apc@itbhu.ac.in* (CV) & Eno.Ebenso@nwu.ac.za (EEE)

GRAPHICAL ABSTRACT

ABSTRACT

In the present study, three hydroxamic acids (HAs) namely acetohydroxamic acid (AHA), benzohydroxamic acid (BHA) and oxalohydroxamic acid (OHA) synthesised, characterized and used as inhibitors for mild steel corrosion in the electrolytic solution of 1M HCl. Corrosion inhibition property of HAs was evaluated using several chemical, electrochemical, surface and computational methods. Results showed that studies HAs act as effective corrosion inhibitors and their inhibition efficiencies follow the order: OHA (96.37%) > BHA (95.69%) > AHA (93.29%). EIS study showed that studied HAs act as interface type inhibitors. Polarization study revealed that HAs demonstrate themselves as mixed type corrosion inhibitors and they adsorb on the active sites of metallic surface. Adsorption of HAs on metal-1M HCl interfaces followed the Langmuir adsorption isotherm model. Surface morphological analyses of inhibited and uninhibited metallic surface were carried out using SEM-EDX and XRD methods. DFT analyses showed that studied compounds act as chelating type of ligands. Effect of Keto-enol tautomerism and different possible conformational isomers on metallic corrosion inhibition was demonstrated. The conformational isomers in which >C=O and -OH (hydroxyl) groups present in same side behave as chelating ligands and form relatively more stable complex than that of conformational isomers in which >C=O and -OH groups present in opposite side. Experimental and DFT studies well complimented each other.

Keywords: Tautomers as corrosion inhibitors, conformational isomers, chelating corrosion inhibitors, Hydroxamic acid and Langmuir adsorption isotherm.

1. Introduction

Corrosion is a process in which metallic materials undergo degradation through chemical and/ or electrochemical reactions with the components of the surrounding environment. Corrosion is a natural and spontaneous process in which a pure metal converts in to its relatively more stable oxide, chloride, carbonate and sulphate etc. Though, complete prevention of metallic corrosion is practically impossible however the rate of corrosive dissolution and its adverse effect can be minimized using previously used methods of corrosion mitigation such as alloying, dealloying, coatings, paintings, passivation and corrosion inhibitors [1-4]. Basic requirements for a compound to be used as corrosion inhibitor are shown in Fig.1. Use of synthetic corrosion inhibitors is one of the most effective methods because of their ease of synthesis and high inhibition effectiveness. Most of the

well-know corrosion inhibitors are heteroatoms (N, O, P, and S) and aromatic rings containing compounds. Obviously, polar functional groups such as -OH, -OMe, $-NH_2$, $-NH_-$, -COOH, -CN, $-O_-$, $-NO_2$, $-CONH_2$, $-COOC_2H_5$ and -N=N- etc. [5-12] enhance the solubility of organic inhibitors in polar electrolytes. Heteroatoms of the polar functional groups also act as adsorption centers as they can transfer their non-bonding electrons to the metallic d-orbitals through coordination boding [13-15]. Along with non-bonding electrons of heteroatoms, multiple bonds of aromatic rings and side chain also favour the adsorption of organic inhibitors on metallic surface through $d\pi$ - $p\pi$ bonding type of interactions. Problem of the corrosive dissolution is even more severe during acid cleanings of metallic ores that acquire the implementation of aggressive solutions such as HCl, H₂SO₄, HNO₃, NaCl and H₃PO₄ etc. Some of the common industrial cleaning processes are acid pickling, descaling, acid descaling and oil-well acidification [15-20].

Hydroxamic acids (HAs) represent a special class of organic compounds that possess several biological and industrial applications. Hydroxamic acid and its derivatives are reported as potential biological agents toward anti-asthmatic and anti-inflammatory activities [21]. Additionally, HAs form highly stable complexes with transition metal cations due to the presence of several electron rich (donor) oxygen and nitrogen heteroatoms. The HAs can be regarded as chelating ligands as they possess at least two electron rich sites (non-bonding and/or π -electrons) that can form coordination bondings with the metallic d-orbitals [22,23]. Because of their high complexation ability, HAs are expected to possess high adsorption tendency on metallic surface. Therefore, HAs can be used as one of the best alternatives to traditional existing corrosion inhibitors that generally show low efficiency at relatively high concentration. In view of this, some of the authors recently reported the corrosion inhibition effect of hydroxamic acids [24, 25]. Because of their natural and biological activities, HAs can be regarded as green and environmental friendly alternatives to the traditional toxic corrosion inhibitors.

Herein, three hydroxamic acids (HAs) designated as AHA, BHA and OHA are used as corrosion inhibitors for mild steel in 1 M HCl medium. Inhibition efficiencies of the HAs were measured using chemical (weight loss), electrochemical (EIS and PDP), surface (SEM and EDX) and density functional theory (DFT) methods. All the studied HAs showed reasonably good protection efficiencies for mild steel in 1M HCl. DFT study is also carried out to demonstrate the effect of different tautomeric forms o tested HAs on their protection capability. Generally, HAs are represented as RC(O)N(OH)R' and different conformational

isomers can be constructed for three studied HAs based on the orientation of R and R'. DFT study was also performed for different conformations isomers of investigated HAs to demonstrate the effect of relative orientation of different groups on the corrosion inhibition performance. Outcomes of the study revealed that AHA, BHA and OHA act as chelating ligands and form stable complexes with metallic surface. Protection efficiency of the tested compounds was first of all investigated using weight loss method and supported by electrochemical studies using potentiodynamic polarization and electrochemical impedance spectroscopic methods. Surface morphology studies and adsorption behaviour of investigated compounds was determined using SEM-EDS and XRD methods. DFT study also carried out to demonstrate the effect of different tautomers and conformational isomers of AHA, BHA and OHA on MS corrosion in 1M HCl. Several experimental and computational indices were computed and described. The order of protection efficiencies of tested HAs derived from chemical, electrochemical and surface investigations were well complimented by DFT studies.

2. Methods and Materials

2.1. Synthesis of HAs

Acetohydroxamic acid (AHA) was synthesized as per the previously used method [26]. In brief, 15 ml double distilled water, 12 ml ethanol and 7g crystalline hydroxylamine hydrochloride were taken in a 500 ml round bottom flask. The mixture was allowed to stir until the above reaction mixture becomes clear. After that, 20 ml of sodium hydroxide (10 mol/L) was added slowly. Temperature of the reaction mixture was maintained at 20°C. In the above reaction mixture, ethyl acetate (0.1 mol) added gradually at room temperature and kept in ice bath for cooling. To the above reaction mixture concentrated HCl was added to decrease the pH level up to 6. After that, 100 ml ethanol was added to above reaction mixture to get yellow colored precipitate. The precipitate was dissolved in a mixture of ethyl acetate and acetone. After proper dissolution, the above reaction mixture cooled to room temperature and kept overnight in freezer to get white crystals of acetohydroxamic. AHA showed the melting point of 88°C±1. Similarly, BHA was prepared using the protocol described previously [26]. 1.4 of hydroxylamine hydrochloride and 2.1 g sodium carbonate (anhydrous) were dissolved in 50 ml ether. Above reaction was stirred to get a homogeneous reaction mixture using a magnetic stirrer. At constant stirring, 2.8 g benzoyl chloride and 3.5 ml double distilled water were added slowly. The above reaction mixture was stirred for 30

minute. The residual solvents (mainly ether) were removed using rotatory evaporator and resultant mixture was kept overnight to get crystalline raw material. Finally, crystallization of the above crude material with ethyl acetate results in to the formation of pure BHA having the melting point of $128^{\circ}C \pm 1$. For OHA synthesis, 9.0 g of hydroxylamine hydrochloride and 7.1 g of diethyl oxalate were added drop-wise with proper shaking at 0°C for 25-30 minutes. The precipitate of raw OHA was obtained after some time that was crystallized in double distilled water to give pure OHA having melting point of $161^{\circ}C \pm 1[24]$. The chemical structure, IUPAC name, abbreviations, and FT-IR, 1H and 13C NMR characterization data of investigated HAs are reported in Table 1 and their respective spectra are shown in Fig. S1.

2.2. Test material and electrolyte

Mild steel sheet having chemical composition of (%) C = 0.18, O = 0.08, S = 0.06, P = 0.04, Cr = 0.04 and reminder Fe was used for the preparation of test specimens for weight loss, electrochemical and surface analyses. The metallic specimens were abraded using emery papers of different (400-1200) grades, washed (with water), and degreased with acetone. The analytical grade HCl (37% HCl MERCK) was used for the preparation of test electrolyte of 1 M HCl electrolytic. Protection efficiency of HAs was determined at their different concentrations ranging from 20-80 ppm.

2.3. Weight loss measurement

Weight loss or gravimetric study is one of most simple, reliable, effective, reproducible, and cost-effective methods for the determination of inhibition efficiency of corrosion inhibitors that does not require employment of any tedious process and expensive instruments. Several useful indices including corrosion rate (ρ), surface coverage (θ) and inhibition efficiency (% η) can be derived using weight loss experimentation. Using weight loss technique, protection efficiency of HAs was measured at their different concentrations in the temperature range of 298–328 K. The weight loss tests were performed for the immersion time of 6h. Weight loss experiments (at each concentration) were triply performed and maximum observed standard derivations were less than 2%. The corrosion rates (ρ) values for mild steel corrosion in acidic medium were calculated using the following equation [27]:

$$\rho = \frac{\Delta w}{At}(1)$$

where, ΔW , A and t represent the weight loss (in mg), the metallic surface area (in cm²) and immersion time (6h), respectively. Using corrosion rate (ρ) values, the inhibition efficiency (% η) was evaluated using following equation [27]:

$$\%\eta = \left\{\frac{\rho^1 - \rho^2}{\rho^1}\right\} \times 100$$
 (2)

Where ρ^{1} and ρ^{2} represent the corrosion rate values for mild steel corrosion in 1M HCl with and without HAs, respectively.

2.4. Electrochemical analyses

Potentiostat Gamry Echem Analyst 5.0 Software G- 300 model was applied for electrochemical studies. The instrument consists of platinum as a counter electrode, mild steel as a working electrode and SCE as a reference electrode. The electrochemical studies were performed after immersing the MS in 1M HCl for 30 minute in order to get open circuit potential (OCP) established. For EIS study, an AC signal of 10 mV amplitude in the frequency range of 100 kHz-0.01 mHz was employed. The Nyquist curves for MS corrosion were fitted in suitable equivalent circuit (Fig. 6). The equivalent circuit consists of solution resistance (R_s), a charge transfer resistance (R_{ct}) and a constant phase element. The values of charge transfer resistance and inhibition efficiency (% η) at different concentrations of HAs were derived using following equation [28]:

$$\%\eta = \frac{R_{ct\,(inh)} - R_{ct}}{R_{ct\,(inh)}} \times 100 \tag{3}$$

In above equation, $R_{ct(inh)}$ and R_{ct} represent the charge transfer resistances for MS corrosion with and without HAs, respectively. For polarization studies, MS potential allowed to scan in the potential range of -250 to +250 V at the constant scan rate of 1 mV s⁻¹ (with respect to the potential of SCE) [21]. The obtained anodic and cathodic Tafel curves were extrapolated to get the values of corrosion current densities (i_{corr}) through which inhibition efficiencies (% η) at several concentrations of HAs were calculated using following relationship [29]:

$$\%\eta = \frac{i_{corr} - i_{corr(inh)}}{i_{corr}} \ge 100$$
(4)

where, $i_{\text{corr (inh)}}$, represent the values of corrosion current densities for MS corrosion in 1M HCl without and with HAs, respectively.

2.5. SEM-EDS and XRD studies

The scanning electron microscope (SEM) coupled with electron dispersion X-ray spectroscopy (EDS) analyses were carried out to support the electrochemical studies. For

SEM-EDX analyses, MS surfaces are allowed to corrode freely in test electrolyte (1M HCl) in the absence and presence of 80 ppm concentration of HAs. After 6h immersion time, surfaces of the corroded specimens were examined using SEM-EDX methods. The ZEISS EVO SEM 18 / INCA 250 EDS XMAX with a detector (20mm) Oxford model was employed for SEM-EDS analyses. X-ray diffraction (XRD) analysis was carried out to determine the nature of protective layer deposited on the surface of metal. The stretch samples collected from the inhibited (80 ppm) and uninhibited metallic surfaces were used for XRD analysis. The PAN Analytical, Netherland X-ray diffractometer was used for this purpose.

2.6. DFT analyses

Density function theory (DFT) based quantum chemical calculations were performed to support the experimental studies. Recently, DFT has emerged one of the most powerful techniques to demonstrate the interactions between corrosion inhibitors and metallic surfaces. In the present study, interactions of HAs and MS surface were demonstrated using Gaussian 09 and basis set of G-31 + G (d, p) basic. The DFT studies were performed on different possible tautomeric and conformational isomers of HAs. Using DFT studies, energies of frontier molecular orbital pictures (E_{HOMO} and E_{LUMO}) and different related indices were derived using following relationships [30]:

$$IE = -E_{HOMO}$$
(5)
$$EA = -E_{LUMO}$$
(6)

$$\eta = \frac{1}{2}(IE - EA) = \frac{1}{2}(-E_{HOMO} + E_{LUMO})$$
(7)

$$\sigma = \frac{1}{\eta} \tag{8}$$

$$\chi = \frac{1}{2} (IE + EA) = \frac{1}{2} (-E_{HOMO} - E_{LUMO})$$
(9)

$$\Delta N = \frac{\chi_{Fe} - \chi_{inh}}{2(\eta_{Fe} + \eta_{inh})}$$
(10)

For the calculation of ΔN (fraction of electron transfer) values, work function of iron (4.88 eV) was used instead of electronegativity of iron. The lowest energy crystalline iron (110) surface was selected for fraction of electron transfer (ΔN_{110}) calculation.

3. Result and discussion

3.1. Weight loss measurements

Effect of AHA, BHA and OHA concentration on MS corrosion in 1M HCl at the different temperatures is presented in Table 2. It can be clearly seen that protection efficiency of AHA, BHA and OHA increases with increasing their concentrations and maximum increase was observed at 80 ppm concentration. Obviously, increase in the AHA, BHA and OHA concentration results consecutive raise in the surface coverage that result in to the corresponding increase in their protection efficiency. Inhibition efficiencies of the HAs followed the order: OHA (96.37%)> BHA (95.69%)> AHA (93.29%). Difference in protection efficiencies of AHA, BHA and OHA can be explained on the basis of their molecular structures. The higher protection efficiency of BHA as compared to AHA can be explained on the basis of the presence of aromatic (phenyl) moiety instead of methyl group of the AHA. Presence of three additional double bonds of the aromatic ring enhances the effectiveness of BHA adsorption on MS surface due to $d\pi$ - πp interactions. OHA contains additional -CO-NH-OH moiety at the place of phenyl ring of BHA. The -CO-NH-OH of OHA should be considered as more electron donor as compared to the aromatic ring of BHA as former contains two oxygen and one nitrogen atoms and one double bond in the form of carbonyl group that can form more strong complex with metallic d-orbital than that of the three double bonds of latter. Careful observation (Table 2) showed that protection efficiencies of the AHA, BHA and OHA decrease on increasing the temperature. Increase in temperature may results into the fractionation, arrangement or/ and decomposition of the HAs molecules that can adversely affect their protection power. More so, increase in kinetic energy of the HAs at elevated temperature can also decrease the adsorption abilities of AHA, BHA and OHA molecules [31].

3.2. Adsorption isotherm

Adsorption isotherm analysis is one of the most important aspects of metal-corrosion interactions. Langmuir adsorption isotherm is the most common and frequently used isotherm models that can be presented using following relationship [32]:
$$\frac{C}{\theta} = \frac{1}{K_{ads}} + C \quad (11)$$

where, K_{ads} represent adsorption-desorption constant. In the present study, Langmuir adsorption isotherm model was well fitted with correlation coefficient (R²) values close to unity. Using K_{ads} values, the standard free energy of adsorption (ΔG_{ads}) values were calculated using following equation [32]:

$$\Delta G_{\rm ads} = -RT \ln \left(55.5 \, K {\rm ads} \right) \tag{12}$$

Here, numerical value of 55.5 denotes the molar concentration of water and *R* is the gas constant and *T* represents the absolute temperature. The values of K_{ads} and ΔG_{ads} at different studied temperatures are presented in Table 3. High numerical values of K_{ads} showed that AHA, BHA and OHA have strong ability to adsorb on metallic surface. Negative values of ΔG_{ads} revealed that AHA, BHA and OHA spontaneously adsorb on metallic surface using their electron rich centers. Literature survey reveals that ΔG_{ads} value of -40 kJ mol⁻¹ or more negative is consisted with chemisorption while its value of -20 kJ mol⁻¹ or less negative is consistent with physisorption mechanism [25,26]. Results presented in Table 3 showed that adsorption of the AHA, BHA and OHA on MS surface obeyed the physiochemisorption by means of minor supremacy of physisorption mechanism as values of ΔG_{ads} for AHA, BHA and OHA are more close to -20 kJ/mol as compared to the -40 kJ/mol[33-34].

3.3. Electrochemical analysis

3.2.1. Potentiodynamic Polarization (PDP)

Anodic and cathodic Tafel curves for MS corrosion in 1M HCl with and without AHA, BHA and OHA at their different concentrations (40 - 80 ppm) are shown in Fig. 3 (a-c) and various PDP parameters such as inhibition efficiency ($\%\eta$), corrosion potential (E_{corr}), corrosion current density (i_{corr}), cathodic (β_c) and anodic (β_a) Tafel slopes are summarized in Table 4. From Fig.3 it can clearly seen that shape of anodic and cathodic curves are significantly affected in the presence of AHA, BHA and OHA indicating that they exert remarkable anticorrosion effect on both anodic and cathodic reactions [35,36]. More so, careful observation of the results presented in table 4 showed that corrosion current density values are much lower in the presence of AHA, BHA and OHA than that of in their absence. This observation suggests that AHA, BHA and OHA effectively adsorb on the metallic surface using their electron rich centers and block the active sites responsible for the corrosion [35-

36]. Observation of the results also showed that presence of AHA, BHA and OHA did not cause any significant shift in the value of corrosion potential (E_{corr}) indicating that AHA, BHA and OHA act as mixed type inhibitors [37-39]. The order of protection efficiencies of AHA, BHA and OHA derived from PDP study was consistent with the order of protection efficiency derived using weight loss method.

3.2.2. Electrochemical impedance spectroscopy (EIS)

EIS is one of the most important electrochemical methods to demonstrate the interfacial behaviours of corrosion inhibitors. Nyquist plots for MS corrosion in 1 M HCl at different AHA, BHA, and OHA concentrations are shown in Fig. 4 (a-c). Nyquist plots represent a single semicircle indicating that MS corrosion with and without AHA, BHA and OHA involve a single charge transfer (SCT) mechanism. The SCT mechanism of MS corrosion in 1M HCl with and without AHA, BHA and OHA was further reinforced by single maxima in the Bode plots (Fig.5). Increase in the diameter of the Nyquist curves on increasing the AHA, BHA and OHA adsorption at the MS-1M HCl interfaces. This finding suggests that AHA, BHA and OHA act as interface type inhibitors and their presence results in to formation of protective film at metal-electrolyte interfaces [40]. Equivalent circuit used for fitting of Nyquist curves is presented in Fig. 6[41]. The double-layer capacitance (C_{dl}) for MS corrosion can be presented as follows [42]:

$$C_{dl} = Yo(\omega_{max})^{n-1}(13)$$

where, *n* and Y_0 represent the phase shift and exponent, respectively. ω represents the angular frequency. Different EIS parameters are summarized in Table 5. Increase in the value of R_{ct} and decrease in the values of C_{dl} is attributed to the adsorption of AHA, BHA and OHA on metallic surface and increase in the thickness of electric double layer, respectively [43-45].

3.4. SEM-EDS analyses

SEM images and EDX spectra of MS surfaces corroded in 1M HCl with and without AHA, BHA and OHA are shown Fig. 7 (a-d) and Fig. 8 (a-d), respectively. It can be clearly seen that morphology of the MS surfaces are much smoother in the presence of AHA, BHA and OHA than that of in their absence. This observation reveals that AHA, BHA and OHA adsorb on metallic surface and protect from corrosive degradation. The adsorption of the AHA, BHA and OHA on MS surface was further supported by EDX spectral analyses. Increase in the

intensity of EDX signal for oxygen and presence of additional signals for heteroatoms (Table 6) in the presence of AHA, BHA and OHA validate the adsorption mechanism of corrosion inhibition.

3.5. X-ray diffraction (XRD) analysis

Recently, XRD has immersed as one of the potential tool for the identification of crystalline phase and to identify the nature of protective layer deposited onto metallic surface. Fig. 9 represents the XRD patterns of the inhibited and uninhibited scratched samples. Fig. 9a depicts the XRD pattern of scratched sample of mild steel surface in the presence of 1 M HCl. The XRD pattern shows three peaks at $2\theta = 37.2^{\circ}$, 43.5° , 44.7° and 54.8° which is resulted due to deposition of surface metallic oxides (Fe₃O₄ and FeOOH) [31, 46]. Careful observation (Fig. 9b-d) showed that XRD patterns of the scratched samples containing AHA, BHA and OHA showed XRD peaks of little intensities. The decrease in intensities of XRD patterns indicates the non-crystalline nature of deposit protective oxide layers.

3.6. Quantum chemical calculations

DFT based quantum chemical calculation is one of the most significant and frequently used computational methods to demonstrate the adsorption and interaction behaviour of corrosion inhibitors [47-50]. Recall that several DFT based parameters such as E_{LUMO} (Lowest Occupied Molecular Orbital), E_{HOMO} (Highest Unoccupied Molecular Orbital), dipole moment (μ), energy gap (ΔE), electron transfer fraction (ΔN), global hardness (η) and electronegativity (χ) are computed from the keto and enol forms and some of the major conformational isotherms of AHA, BHA and OHA and are presented in Table 7. From the frontier molecular orbital picture it can be seen that HOMO and LUMO are localized over the entire parts of the AHA, BHA and OHA molecules. This observation suggests that they act as strong electron donor as well as strong electron acceptor. Obviously, HOMO defines the part of inhibitor molecules responsible for electron donation and a higher value of E_{HOMO} is consistent with high electron donating ability. Conversely, LUMO defines the part of inhibitor molecules responsible for electron acceptance and a lower value of E_{LUMO} is consistent with high electron accepting ability [51, 52]. Careful observation of the results presented in Table 7 showed that AHA, BHA and OHA are associated with relatively high values of E_{HOMO} and lower values of E_{LUMO} therefore they offer strong donor-acceptor interactions with the metallic surface and act as effective corrosion inhibitors[53]. Frontier molecular orbital pictures (HOMO and LUMO) for AHA, BHA and OHA are shown in Figs.

12

10-12. DFT studies were carried out for keto and enol forms of the AHA, BHA and OHA molecules along with some common conformational isomers. Different conformational isomers are constructed based on the orientation of hydroxyl (-OH) attached with nitrogen with respect to the carbonyl (>C=O) functional group as presented in Figs. 10-12.

It is important to mention that C-N bond of AHA Keto-I acquires the bond length of 1.37Å which is relatively lesser as compared to the normal C-N bond length. The reduction in the C-N bond length is might be due to resonance between carbonyl (>C=O) functional group and unshared pair electrons of nitrogen. Intermolecular H-bonding between >C=O (carbonyl) and –OH (hydroxyl) groups can also plays a significant role in the reduction of C-N bond length. The H-bond length in Keto-I form (AHA) was 1.96Å. In AHA Keto-II form (>C=O and –OH present in the opposite side), observed C-N bond length was 1.40 Å. Similarly, C-N and H-bonding acquire the bond lengths of 1.38 Å and 1.93 Å, respectively.

The OHA has two hydroxamic acid groups therefore theoretically three major conformational isomers are possible as presented in Fig. 12. It important to notice that AHA, BHA and OHA in their keto and enol forms do not show any remarkable change in the DFT parameters. Similarly, different conformational isomers also did not show any remarkable change in their values of DFT indices. However, careful observation of the DFT results presented in Table 7 showed that conformational isomeric forms of AHA, BHA and OHA in which >C=O and -OH (hydroxyl) groups present in same side are more effective corrosion inhibitors than that of their enol-tautomeric forms. This can be explained on the basis of complexation behaviour of AHA, BHA and OHA with metallic d-orbital. Obviously, in keto-tautomeric form in which >C=O and -OH (hydroxyl) groups present in same side behave as chelating ligands and form relatively more stable complex than that of the conformational isomeric forms of AHA, BHA and OHA in which >C=O and -OH (hydroxyl) groups present in same side behave as chelating ligands and form relatively more stable complex than that of the conformational isomeric forms of AHA, BHA and OHA in which >C=O and -OH groups present in opposite side.

3.7. Corrosion inhibition mechanism

It is well established that most of the organic compounds interact with metallic surface using donor-acceptor or charge sharing mechanism. Mostly, they interact with physiochemisorption mechanism. Physisorption is mostly occurs via the interaction between charge metallic surface charged inhibitor molecules whereas chemisorption takes place through charge sharing between metallic orbitals and inhibitor molecules. Several factors including temperature, nature of metal and electrolyte, immersion time etc. affect the adsorption behaviour of the inhibitor molecules. Nevertheless, adsorption of inhibitor molecules results

into the formation inhibitive films that isolate the metal from corrosive environment [54]. It is established that in acidic medium, adsorption of organic inhibitors containing heteroatoms in their molecular structures proceeds through physisorption and finally chemisorption. The compounds tested as corrosion inhibitors in the present study contain numerous electron rich centers through which they can effectively adsorb and inhibit metallic corrosion. These electron rich centers transfer their non-bonding and π -electrons into surface metallic orbital and form coordination bondings [55,56]. The adsorption behaviour of different tested corrosion inhibitors is illustrated in Fig. 13.

4. Conclusions

In the present study, corrosion inhibition effect of three hydroxamic acids namely acetohydroxamic acid (AHA), benzohydroxamic acid (BHA) and oxalohydroxamic acid (OHA) for mild steel corrosion is evaluated using chemical, electrochemical, surface and DFT methods. Following conclusions were drawn:

- 1. AHA, BHA and OHA act as effective corrosion inhibitors for mild steel in 1M HCl
- 2. Their effectiveness followed the order: OHA (96.37%)> BHA (95.69%)> AHA (93.29%).
- 3. Potentiodynamic polarization study showed that AHA, BHA and OHA behaved as mixed type corrosion inhibitors.
- 4. EIS study showed that AHA, BHA and OHA behaved as interface type.
- 5. Adsorption of AHA, BHA and OHA at the interface of MS and 1M HCl obeyed the Langmuir adsorption isotherm model.
- 6. DFT study suggests that AHA, BHA and OHA interact with donor-acceptor interactions.
- In conformational isomeric forms of AHA, BHA and OHA in which >C=O and -OH (hydroxyl) groups present in same side behave as chelating ligands.

Acknowledgements

Author Dr. Dakeshwar Kumar Verma thankful to principal govt. Digvijay College for providing instrumental and basic facilities

5. Conflict of interest

Authors declared no conflict of interest

References

- Singh, A., Ansari, K. R., Quraishi, M. A., Kaya, S. and Banerjee, P. The effect of an N-heterocyclic compound on corrosion inhibition of J55 steel in sweet corrosive medium, New Journal of Chemistry, 43 (2019)6303-6313.
- Verma, C., Olasunkanmi, L.,Ebenso, E.E., & Quraishi, M.A., C. Verma, L. Olasunkanmi, E.E. Ebenso, M. Quraishi, Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: a review, Journal of Molecular Liquids, 251 (2017) 100–118.
- Dehghani, A., Bahlakeh, G., Ramezanzadeh, B. and Ramezanzadeh, M.Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: Detailed macro/micro-scale experimental and computational explorations, Construction and Building Materials, 245 (2020) 118464.
- Verma, C., Verma, D.K., Ebenso, E.E., & Quraishi, M.A., (2018). Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: An overview. Heteroatom Chemistry, e21437.
- Solomon, M. M., Umoren, S. A., Quraishi, M. A., & Salman, M. (2019). Myristic acid based imidazoline derivative as effective corrosion inhibitor for steel in 15% HCl medium. Journal of Colloid and Interface Science, 551, 47– 60. https://doi.org/10.1016/j.jcis.2019.05.004
- Zhang, J. (2020). 2-(3H-Imidazol-4-yl)-ethylamine as a green corrosion inhibitor for Q235 steel in hydrochloric acid. International Journal of Electrochemical Science, 15(2), 1437–1449. https://doi.org/10.20964/2020.02.27.
- Singh, A., Ansari, K. R., Haque, J., Dohare, P., Lgaz, H., Salghi, R., & Quraishi, M. A. (2018). Effect of electron donating functional groups on corrosion inhibition of mild steel in hydrochloric acid: Experimental and quantum chemical study. Journal of the Taiwan Institute of Chemical Engineers, 82, 233–251. https://doi.org/10.1016/j.jtice.2017.09.021.
- Salarvand, Z., Amirnasr, M., Talebian, M., Raeissi, K., & Meghdadi, S. (2017). Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corrosion Science, 114, 133– 145. https://doi.org/10.1016/j.corsci.2016.11.002.

- El Aoufir, Y., Lgaz, H., Bourazmi, H., Kerroum, Y., Ramli, Y., Guenbour, A., &Oudda, H. (2016). Quinoxaline derivatives as corrosion inhibitors of carbon steel in hydrochloridric acid media: Electrochemical, DFT and montecarlo simulations studies. Journal of Materials and Environmental Science, 7(12), 4330–4347.
- Obot, I. B., Madhankumar, A., Umoren, S. A., &Gasem, Z. M. (2015). Surface protection of mild steel using benzimidazole derivatives: Experimental and theoretical approach. Journal of Adhesion Science and Technology, 29(19), 2130–2152.
- Rbaa, M., Galai, M., Abousalem. A. S., Lakhrissi. B., Touhami. M. E., Warad. I., Zarrouk. (2019). Synthetic, spectroscopic characterization, empirical and theoretical investigations on the corrosion inhibition characteristics of mild steel in molar hydrochloric acid by three novel 8-hydroxyquinoline derivatives.Ionics, https://doi.org/10.1007/s11581-019-03160-9.
- Singh, A., Ansari, K. R., Quraishi, M. A., Kaya, S. and Banerjee, P. The effect of anN-heterocyclic compound on corrosion inhibition of J55 steel in sweet corrosive medium, New Journal of Chemistry, 43 (2019) 6303-6313.
- Yildiz, M., Gerengi, H., Solomon, M. M., Kaya, E., &Umoren, S. A. (2018). Influence of 1-butyl-1-methylpiperidinium tetrafluoroborate on St37 steel dissolution behavior in HCl environment. Chemical Engineering Communications, 205(4), 538– 548.
- Rani, B. E. A., &Basu, B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: An overview. International Journal of Corrosion. https://doi.org/10.1155/2012/380217.
- Lai, C., Guo, X., Wei, J., Xie, B., Zou, L., Li, X., ... Wang, C. (2017). Investigation on Two Compounds of O,O'-dithiophosphate Derivatives as Corrosion Inhibitors for Q235 Steel in Hydrochloric Acid Solution. Open Chemistry, 15(1), 263–271.
- Wang, J., Lin, Y., Singh, A., & Liu, W. (2018). Investigation of some porphyrin derivatives as inhibitors for corrosion of N80 steel at high temperature and high pressure in 3.5% NaCl solution containing carbon dioxide. International Journal of Electrochemical Science, 13(12), 11961–11973.
- Qiang, Y., Zhang, S., Tan, B., & Chen, S. (2018). Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corrosion Science, 133, 6–16. Leena, P., ZeinulHukuman, N. H., Biju, A. R., &Jisha, M. (2019). Studies on methanolic extract of lepidagathiskeralensis as green corrosion

inhibitor for mild steel in 1M HCL. Journal of Electrochemical Science and Technology, 10(2), 231–243.

- Singh, A., Ansari, K. R., Kumar, A., Liu, W., Songsong, C., & Lin, Y. (2017). Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment. Journal of Alloys and Compounds, 712, 121–133.
- PreethiKumari, P., Shetty, P., & Rao, S. A. (2017). Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative. Arabian Journal of Chemistry, 10(5), 653–663.
- 20. Reddy, A.S., Kumar, M.S., & Reddy, G.R., (2000). A convenient method for the preparation of hydroxamic acids, Tetrahedron Letters, 41, 6285–6288.
- Farkas, E., Enyedy, E. A., Csoka, H., (1999). A comparison between the chelating properties of some dihydroxamic acids, desferrioxamine B and acetohydroxamic acid, Polyhedron, 18, 2391–2398.
- Farkas, E., Enyedy, E.A., Zekany, L., &Deak, G., (2001). Interaction between iron (II) and hydroxamic acids: oxidation of iron (II) to iron (III) by desferrioxamine B under anaerobic conditions, Journal of Inorganic Biochemistry, 83, 107–114.
- Alagta, A., Felhosi, I., &Kalman, E., (2007). Hydroxamic acid corrosion inhibitor for steel in aqueous solution, Material Science Forum, 537–538, 81–88.
- 24. Telegdi, J., Rigo, T., &Kalman. E., (2005). Molecular layers of hydroxamic acids in copper corrosion inhibition, Journal of Electroanalytical Chemistry, 582, 191–201.
- 25. Bahlakeh, G., Dehghani, A., Ramezanzadeh, B. And Ramezanzadeh, M. Highly effective mild steel corrosion inhibition in 1 M HCl solution by novel green aqueous Mustard seed extract: Experimental, electronic-scale DFT and atomic-scale MC/MD explorations, Journal of Molecular Liquids, 293 (2019)111559
- Verma, D.K., Khan, F., (2016). Corrosion inhibition of mild steel in hydrochloric acid using extract of glycine max leaves, Research on Chemical Intermediates, 42, 3489– 3506.
- Singh, A., Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Lgaz, H., & Chung, I. M. (2020). Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium. Journal of Colloid and Interface Science, 560, 225–236.

- Verma, C., Quraishi, M. A., Ebenso, E. E., Obot, I. B., & El Assyry, A. (2016). 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1M HCl: Experimental and theoretical studies. Journal of Molecular Liquids, 219, 647–660.
- 29. Verma, D.K., Khan, F., I. Bahadur, I., Salman, M., Quraishi, M.A., Ebenso, E.E., & Verma, C., (2018). Inhibition performance of Glycine max, Cuscuta reflexa and Spirogyra extracts for mild steel dissolution in acidic medium: Density functional theory and experimental studies, Results in Physics, 10, 665–674.
- Ahmed, M. H. O., Al-Amiery, A. A., Al-Majedy, Y. K., Kadhum, A. A. H., Mohamad, A. B., &Gaaz, T. S. (2018). Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid. Results in Physics, 8, 728–733.
- Verma, D.K., & Khan, F., (2016). Green approach to corrosion inhibition of mild steel in hydrochloric acid medium using extract of spirogyra algae, Green Chemistry Letters and Reviews, 9 (1), 52-60.
- Singh, A., Ahamad, I., & Quraishi, M. A. (2016). Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, 9, S1584–S1589.
- 33. Fiori-Bimbi, M. V., Alvarez, P. E., Vaca, H., &Gervasi, C. A. (2015). Corrosion inhibition of mild steel in HCL solution by pectin. Corrosion Science, 92, 192–199.
- Dutta, A., Saha, S. K., Adhikari, U., Banerjee, P., &Sukul, D. (2017). Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: A combined experimental and theoretical approach. Corrosion Science, 123, 256–266.
- 35. Singh, A., Ansari, K. R., Kumar, A., Liu, W., Songsong, C., & Lin, Y. (2017). Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment. Journal of Alloys and Compounds, 712, 121–133.
- 36. Yadav, M., Kumar, S., Tiwari, N., Bahadur, I., &Ebenso, E. E. (2015). Experimental and quantum chemical studies of synthesized triazine derivatives as an efficient corrosion inhibitor for N80 steel in acidic medium. Journal of Molecular Liquids, 212, 151–167.
- Singh, A., Lin, Y., Ansari, K. R., Quraishi, M. A., Ebenso, E. E., Chen, S., & Liu, W. (2015). Electrochemical and surface studies of some Porphines as corrosion inhibitor

for J55 steel in sweet corrosion environment. Applied Surface Science, 359, 331–339.

- Zhang, D., Tang, Y., Qi, S., Dong, D., Cang, H., & Lu, G. (2016). The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl. Corrosion Science, 102, 517–522.
- Abd El-Lateef, H. M., Abo-Riya, M. A., &Tantawy, A. H. (2016). Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic gemini surfactants on carbon steel pipelines in acid pickling processes. Corrosion Science, 108, 94–110.
- Abd El-Lateef, H. M., &Tantawy, A. H. (2016). Synthesis and evaluation of novel series of Schiff base cationic surfactants as corrosion inhibitors for carbon steel in acidic/chloride media: Experimental and theoretical investigations. RSC Advances, 6(11), 8681–8700.
- Lgaz, H., Salghi, R., Jodeh, S., &Hammouti, B. (2017). Effect of clozapine on inhibition of mild steel corrosion in 1.0 M HCl medium. Journal of Molecular Liquids, 225, 271–280.
- Hassannejad, H., &Nouri, A. (2018). Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution. Journal of Molecular Liquids, 254, 377–382.
- Alvarez, P. E., Fiori-Bimbi, M. V., Neske, A., Brandán, S. A., &Gervasi, C. A. (2018). Rolliniaoccidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. Journal of Industrial and Engineering Chemistry, 58, 92–99.
- 44. Bedair, M. A., El-Sabbah, M. M. B., Fouda, A. S., &Elaryian, H. M. (2017). Synthesis, electrochemical and quantum chemical studies of some prepared surfactants based on azodye and Schiff base as corrosion inhibitors for steel in acid medium. Corrosion Science, 128, 54–72.
- 45. Solomon, M. M., Gerengi, H., &Umoren, S. A. (2017). Carboxymethyl Cellulose/Silver Nanoparticles Composite: Synthesis, Characterization and Application as a Benign Corrosion Inhibitor for St37 Steel in 15% H₂SO₄ Medium. ACS Applied Materials and Interfaces, 9(7), 6376–6389.
- 46. Chugh, B., Singh,A. K., Thakur, S., Pani, B., Lgaz, H., Chung, I. M., Jha, R., and Ebenso, E. E. (2020). Comparative investigation of corrosion-mitigating behaviour of thiadiazole-derived bis-schiff bases for mild steel in acid medium: experimental,

theoretical, and surface study. ACS Omega, https://dx.doi.org/10.1021/acsomega.9b04274.

- 47. Obot, I. B., Madhankumar, A., Umoren, S. A., &Gasem, Z. M. (2015). Surface protection of mild steel using benzimidazole derivatives: Experimental and theoretical approach. Journal of Adhesion Science and Technology, 29(19), 2130–2152.
- 48. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian, Inc., Wallingford CT; 2009.
- El Aoufir, Y., Lgaz, H., Bourazmi, H., Kerroum, Y., Ramli, Y., Guenbour, A., &Oudda, H. (2016). Quinoxaline derivatives as corrosion inhibitors of carbon steel in hydrochloridric acid media: Electrochemical, DFT and montecarlo simulations studies. Journal of Materials and Environmental Science, 7(12), 4330–4347.
- Hadisaputra, S., Purwoko, A. A., Ilhamsyah, I., Hamdiani, S., Suhendra, D., Nuryono, N., &Bundjali, B. (2018). A combined experimental and theoretical study of (E)-ethyl 3-(4-methoxyphenyl)acrylate as corrosion inhibitor of iron in 1 M HCL solutions. International Journal of Corrosion and Scale Inhibition, 7(4), 633–647.
- 51. Khalaf, M. M., Tantawy, A. H., Soliman, K. A., &Abd El-Lateef, H. M. (2020). Cationic gemini-surfactants based on waste cooking oil as new 'green' inhibitors for N80-steel corrosion in sulphuric acid: A combined empirical and theoretical approaches. Journal of Molecular Structure, 1203.
- 52. Dehghani, A., Bahlakeh, G., Ramezanzadeh, B., &Ramezanzadeh, M. (2019). Potential of Borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: Electrochemical and theoretical studies. Journal of Molecular Liquids, 277, 895–911.
- 53. Salarvand, Z., Amirnasr, M., Talebian, M., Raeissi, K., &Meghdadi, S. (2017). Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corrosion Science, 114, 133–145.
- 54. Pournazari, S.,Moayed, M. H., & Rahimizadeh, M. (2013) Pages 20-31, In situ inhibitor synthesis from admixture of benzaldehyde and benzene-1,2-diamine along with FeCl₃ catalyst as a new corrosion inhibitor for mild steel in 0.5 M sulphuric acid. Corrosion Science, 71, 20-31.
- 55. Abd El-Lateef, H. M., Soliman, K. A., &Tantawy, A. H. (2017). Novel synthesized Schiff Base-based cationic gemini surfactants: Electrochemical investigation,

theoretical modeling and applicability as biodegradable inhibitors for mild steel against acidic corrosion. Journal of Molecular Liquids, 232, 478–498.

56. Khalaf, M. M., Tantawy, A. H., Soliman, K. A., & Abd El-Lateef, H. M. (2020). Cationic gemini-surfactants based on waste cooking oil as new 'green' inhibitors for N80-steel corrosion in sulphuric acid: A combined empirical and theoretical approaches. Journal of Molecular Structure, 1203. https://doi.org/10.1016/j.molstruc.2019.127442.

Figure 1: Schematic illustrations of basic requirrements of corrosion inhibitors.

Figure 2: Langmuir plots of Log C (ppm) vs Log ($\theta/1-\theta$) for adsorption of OHA, BHA and AHA molecules on MS surface in 1M HCl.

Solution

Figure 3: Potentiodynamic polarization curves for mild steel in molar concentration of hydrochloric acid (1 M HCl) and different concentrations (40-80 ppm) of (a) OHA, (b) BHA and (c) AHA at room temperature.

SULLO

Figure 4: Nyquist plots for mild steel in molar concentration of hydrochloric acid (1 M HCl) and different concentrations (40-80 ppm) of (a) OHA, (b) BHA and (c) AHA at room temperature.

Figure 5: Bode ($\log f \text{ vs} \log |Z|$ & phase angle ($\log f \text{ vs}$ –phase) plots for mild steel in 1 M HCl and different concentrations (40-80 ppm) of (a) OHA, (b) BHA and (c) AHA at room temperature

Figure 6:Equivalent circuit model applied for fitting of the impedance spectra

Figure 7:SEM microphotographs of mild steel in molar concentration of hydrochloric acid (1 M HCl) after 6h immersion period at 298 K (a) after immersion in 1 M HCl, (b) after immersion with 80 ppm OHA, (c) after immersion with 80 ppm BHA and (d) after immersion with 80 ppm AHA

Figure 8:EDS spectra of mild steel coupons in molar concentration of hydrochloric acid (1 M HCl) (a) after immersion in 1 M HCl, (b) after immersion with 80 ppm OHA, (c) after immersion with 80 ppm BHA and (d) after immersion with 80 ppm AHA.

Fig. 9. XRD pattern of scratches sample of mild steel in 1 M HCl (a) after immersion in 1 M HCl, (b) after immersion with 80 ppm OHA, (c) after immersion with 80 ppm BHA and (d) after immersion with 80 ppm AHA.

Fig. 10. The optimized structure (left), HOMO (middle) and LUMO (right) for keto and enol forms of AHA respectively.

Fig. 11. The optimized structure (left), HOMO (middle) and LUMO (right) for keto and enol forms of AHA respectively.

Fig. 12. The optimized structure (left), HOMO (middle) and LUMO (right) for keto and enol forms of AHA respectively.

Fig. 13: Possible adsorption mechanism of a) AHA b) BHA and, c) OHA onto metal surface in 1 M HCl aqueous solution.

Table 1: IUPAC names, Chemical structures, abbreviations and analytical data of the investigated inhibitor (AHA, BHA and OHA) molecules.

S.	IUPAC name	Structures	Analytical and spectral data
N0.			
1	N-hydroxyacetamide	O	C ₂ H ₅ NO ₂ ; Mol. wt.:75.07D; M. P.:
	(Acetohydroxamic acid) AHA	Но, 🙏	88°C±1, IR (KBr): 3227.85, 2868.93,
		H₃C N	1659.64, 1449.79, 1376.02; ¹ HNMR
		п	(DMSO, δ, ppm): 8.72, 2.1, 2.2;
			¹³ CNMR (DMSO. δ . ppm): 173.9.
			38.8
2	<i>N</i> -hydroxybenzamide	<u> </u>	C ₇ H ₇ NO ₂ ; Mol. wt.:231.20D; M. P.:
	(Benzohydroxamic acid) BHA		128°C ±1. IR (KBr): 3298.05.
	•	NH НО	2754.55, 1646.72, 1636.44, 1315.86;
			¹ HNMR (DMSO, δ , ppm): 7.61, 7.8,
			2.60: ¹³ CNMR (DMSO, δ , ppm):
			164.6, 128.81, 39.94
3	N1 N2 dibudu anno lamida	но—мн 🏼 🗶	C ₂ H ₄ N ₂ O ₄ ; Mol. wt.:120.06D; M. P.:
-	(Ovelobydrovernic acid) OHA	∕ ⊨ o	161°C ±1, IR (KBr):3271.87,
	(Oxaloliyuloxalilic acid) OliA		1654.81, 1442.14; ¹ HNMR (DMSO,
			δ . ppm): 10.2, 2.5; ¹³ CNMR (DMSO,
		но	δ ppm): 157.20
			-, [[/

Table 2: Parameters derived from weight loss measurements in the absence and presence of inhibitors at different concentrations (20-80 ppm) and temperature (298 - 328 K) for mild steel in 1 M HCl.

Inhibitor	Conc.		Corrosion Rate, ρ , (mg cm ⁻² h ⁻¹)			Inhibition Efficiency (%IE)			
	(ppm)								
		298K	308K	318K	328K	298K	308K	318K	328K
OHA	Blank	0.854	1.562	3.088	4.665	-	-	-	-
	20	0.085	0.245	0.631	1.021	90.04	84.31	79.57	78.11
	40	0.069	0.201	0.587	0.880	91.92	86.56	80.99	81.14
	60	0.049	0.168	0.513	0.755	94.26	89.24	83.39	83.82
	80	0.031	0.122	0.445	0.704	96.37	92.19	85.59	84.91
BHA	Blank	0.766	1.585	3.447	4.878	-	-	-	-
	20	0.098	0.255	0.744	1.302	87.20	83.91	78.41	73.31
	40	0.075	0.214	0.589	1.213	90.20	86.49	82.91	75.13
	60	0.050	0.198	0.502	1.156	93.47	87.50	85.44	76.30
	80	0.033	0.172	0.455	1.103	95.69	89.14	86.80	77.39
A T T A	Dlault	0.054	1 4 4 5	2 1 4 4	1 5 5 1				
AHA	Blank	0.954	1.445	5.144	4.551	-	-	-	-
	20	0.131	0.252	0.568	1.222	86.26	82.56	81.93	/3.15
	40	0.112	0.213	0.514	1.178	88.26	85.26	83.65	74.12
	60	0.087	0.178	0.495	1.104	90.88	87.68	84.25	75.74
	80	0.064	0.153	0.466	0.998	93.29	89.41	85.18	78.07

Table 3: Gibb's free energies (ΔG_{ads}) and adsorption constants (K_{ads}) values without and with inhibitors at different concentration (20-80 ppm) and temperature (298 – 328 K) for mild steel in 1 M HCl.

Inhibitor	Temp. (K)	R^2	Kads	$\Delta G_{ m ads}$
			(L mol ⁻¹)	(kJ mol ⁻¹)
OHA	-	-	-	-
	298	0.9993	410.00	-24.890
	308	0.9983	294.12	-24.833
	318	0.9988	322.58	-25.882
	328	0.9978	322.58	-26.705
BHA	-	-	-	-
	298	0.9992	312.50	-24.177
	308	0.9980	500.00	-26.198
	318	0.9969	555.50	-27.318
	328	0.9978	303.03	-26.524
AHA	-	- 0	-	-
	298	0.9989	344.83	-24.422
	308	0.9995	344.83	-25.240
	318	0.9999	322.58	-25.882
	328	0.9985	333.33	-26.794
	S.			

Table 4: Parameters derived from Tafel polarisation in the absence and presence of inhibitors at different concentration (20-80 ppm) and temperature (298 – 328 K) for mild steel in 1 M HCl.

Inhibitors	Concentration	Tafel polarisation parameters

	(ppm)						
		I _{corr} (µA/cm ²)	E _{corr} (mV vs SCE)	β_a (mV dec ⁻¹)	β_c (mV dec ⁻¹)	%η _(PDP)	% <i>IE</i> (WL)
	Blank	86.31	-518	270.9	305.5	-	-
OHA	40	8.707	-507	85.22	142.6	89.91	91.92
	60	6.285	-500	77.60	188.2	92.71	94.26
	80	4.557	-491	82.67	161.3	94.72	96.37
BHA	40	11.13	-522	58.81	58.33	87.10	90.20
	60	08.86	-504	75.24	128.5	89.73	93.47
	80	05.18	-507	84.41	140.4	93.99	95.69
AHA	40	12.25	-510	110.4	192.0	85.80	88.26
	60	09.36	-504	124.4	222.1	89.15	90.88
	80	07.58	-518	107.1	131.3	91.21	93.29

Table 5: Parameters derived from electrochemical impedance spectroscopy (EIS) in the absence and presence of inhibitors at different concentration (20-80 ppm) and temperature (298 – 328 K) for mild steel in 1 M HCl.

Inhibitor	Conc. (ppm)	$R_{ m s}\left(\Omega ight)$	$R_{\rm ct}(\Omega{\rm cm}^2)$	C_{dl} (µF cm ⁻²)	$\%\eta_{EIS}$	%IE _{WL}
	Blank	0.985	05.22	122.4	-	
ОНА	40	1.522	88.40	83.51	94.09	91.92
	60	0.906	131.2	80.23	96.02	94.26
	80	0.844	181.7	69.95	97.12	96.37
BHA	40	1.022	29.83	107.8	82.50	90.20
	60	1.561	73.48	87.45	92.89	93.47
	80	2.314	166.2	63.02	96.85	95.69
AHA	40	1.554	25.22	74.01	79.30	88.26
	60	1.582	74.09	52.23	92.95	90.88
	80	3.498	119.6	31.14	95.63	93.29
		S				

Table 6: Percentage composition (wt %) of elements of mild steel surface in the absence and

 presence of inhibitors (80 ppm each) obtained from EDS spectral method.
Media	Composition (wt %)							
	Fe	Cl	0	С	S	Ν	Р	Cr
Mild Steel (MS)	99.60	-	0.08	0.18	0.06	-	0.04	0.04
MS in 1 M HCl	92.92	5.88	1.20	-	-	-	-	-
MS in AHA + HCl solution	88.71	0.31	3.41	4.44	-	3.13	-	-
MS in BHA + HCl solution	87.15	0.40	3.30	5.04	-	4.11	-	-
MS in OHA + HCl solution	87.15	0.48	3.42	5.13	0.03	3.80	-	-

Table 7: DFT parameters derived for	different tautomers	and conformational	isomers of
AH	IA, BHA, OHA.		

Compound	E _{HOMO}	ELUMO	ΔE	IE	EA	η	χ	σ
	(eV)	(eV)	(eV)			(eV)	(eV)	(eV)
AHA								

Keto-I	-6.50	0.18	6.68	6.50	-0.18	3.34	3.34	0.299
Keto-II	-6.90	0.20	7.10	6.90	-0.20	3.55	3.55	0.281
Enol-I	-6.27	0.78	7.05	6.27	-0.78	3.52	3.52	0.284
Enol-II	-6.14	0.80	6.94	6.14	-0.80	3.47	3.47	0.288
			BHA					
Keto-I	-6.47	-1.36	5.11	6.47	1.36	2.55	3.91	0.392
Keto-II	-6.84	-1.22	5.62	6.84	1.22	2.87	4.03	0.348
Enol-I	-6.11	-1.07	5.04	6.11	1.07	2.52	3.59	0.396
Enol-II	-6.02	-0.92	5.10	6.02	0.92	2.55	3.24	0.392
			OHA					
Keto-I	-7.18	-1.78	5.40	7.18	1.78	2.70	4.48	0.370
Keto-II	-6.93	-0.86	6.06	6.93	0.86	3.03	3.89	0.330
Keto-III	-6.75	-1.76	4.99	6.75	1.76	2.49	4.255	0.401
Enol-I	-6.26	-1.12	5.14	6.26	1.12	2.57	3.69	0.389
Enol-II	-6.30	-0.82	5.48	6.30	0.82	2.74	3.56	0.364
Enol-III	-6.01	-1.06	4.96	6.01	1.06	2.48	3.53	0.403

47

<u>Highlights</u>

- 1. Three hydroxamic acids (HAs) used as corrosion inhibitors for mild steel in 1M HCl.
- **2.** Their effectiveness followed the sequence: OHA (96.37%) > BHA (95.69%) > AHA (93.29%).
- **3.** HAs acted as mixed type corrosion inhibitors.
- **4.** Adsorption of HAs on metal-1M HCl interfaces followed the Langmuir adsorption isotherm model.
- **5.** Effect of Keto-enol tautomerism and different possible conformational isomers was demonstrated using DFT methods.

रिसर्च जरनल ऑफ आर्ट्स, मैनेजमेन्ट एण्ड सोशल साइन्सेस

PEER-REVIEWED RESEARCH JOURNAL UGC JOURNAL NO. (OLD) 2138, IMPACT FACTOR 3.543 Indexed & Listed at: Ulrich's International Periodicals Directory ProQuest, U.S.A. Title Id: 715205

अंक-19 | हिन्दी संस्करण | वर्ष-09 | सितम्बर 2020

Scanned by CamScanner

2020

रिसर्च जरनल ऑफ आर्ट्स, मैनेजमेन्ट एण्ड सोशल साइन्सेस

Peer-Reviewed Research Journal UGC Journal No. (Old) 2138 Impact Factor 3,543 Indexed & Listed at: Ulrich's Periodicals Directory ©, ProQuest, U.S.A. Title Id : 715204

अंक-19	हिन्दी संस्करण	वर्ष-09	सितम्बर 2020
S.41 17	10-01 4400101	44-07	

प्रोफेंसर ब्रजगोपाल प्रधान सम्पादक सेवानिवृत्त आचार्य, उच्च शिक्षा प्रतिष्ठित भारतेन्दु हरिश्चन्द्र एवार्ड से सम्मानित profbrajgopal <u>a gmail.com</u>

डॉ. अखिलेश शुक्ल

ऑनरेरी सम्पादक प्राध्यापक, समाजशास्त्र एवं समाजकार्य विभाग उच्च शिक्षा उत्कृष्टता संस्थान, नैक 'ए' ग्रेड शासकीय ठाकुर रणमत सिंह महाविद्यालय, रीवा (म.प्र.) प्रतिष्ठित भारतेन्दु हरिश्चन्द्र एवार्ड तथा पं. गोविन्द वल्लभ पंत एवार्ड से सम्मानित <u>akhileshtrscollege a gmail.com</u>

> डॉ. संध्या शुक्ल प्राध्यापक एवं विभागाध्यक्ष, राजनीति विज्ञान विभाग उच्च शिक्षा उत्कृष्टता संस्थान, नैक 'ए' ग्रेड शासकीय ठाकुर रणमत सिंह महाविद्यालय, रीवा (म.प्र.) <u>drsandhyatrs@gmail.com</u>

डॉ. गायत्री शुक्ल अतिरिक्त निदेशक, सेन्टर फॉर रिसर्च स्टडीज, रीबा <u>shuklagayatri@gmail.com</u>

> डॉ. आर. एन. शर्मा सेवानिवृत्त आचार्य, उच्च शिक्षा, रीवा msharmanchru*a* gmail.com

सेन्टर फॉर रिसर्च स्टडीज, रीवा

की मुख्य शोध पत्रिका

Scanned by CamScanner

अनुक्रमणिका

		09
01	ग्रामीण समाज में महिलाओं की स्थिति- एक विश्लपण	
	(रीवा जिले के ग्राम लक्ष्मणपुर के विशेष संदर्भ म)	
	आंचल शुक्ल, आखलेश शुक्ल	19
02	. बम्बई एवं लाहीर में आय समाज का भूमिका :	
	एक समाक्षात्मक अध्ययन	
	वरदराज 	25
03.	प्राचान भारत में स्त्रिया का सामाजिक स्थित	
	नरन्द्र सिंह	32
04.	समाट शहर : अवधारणात्मक परिप्रक्ष्य	
05	नारण कुमार राथ कोविट 10 हा जनजनीय णिष्ण्य पर प्रश्नम	37
05	(दन्तेवाडा जिले के मुफ्रिंग जनजाति के विणेष मंदर्भ)	
	अशोक कमार नाग	
	आयशा करेशी	
06.	बाल अपचार (कोविड 19 के संदर्भ में)	44
	गजानन मिश्र	
07	मरिया जनजातीय समाज की वर्तमान जीवन प्रणाली के महत्वपूर्ण पक्षों	51
	में आये बदलावों का अध्ययन (बस्तर जिले के विशेष संदर्भ में)	
	रूपिन्दर जीत कौर	
	किरण नुरूटो	
08	महादलित जातियों की सामाजिक, आर्थिक एवं शैक्षणिक स्थिति	58
	पुष्पा	
09	. दैशिक चिंतन में ही है भारत की सभी समस्याओं का हल:पंडित दीनदयाल उपाध्याय	62
	प्रवेश कुमार	
10	. गाँधी एवं अम्बेडकर के सामाजिक विचारों में महिला सशक्तिकरण	69
	स्मिता कुमारी	
11	. रीवा जिले में जनप्रतिनिधियों की सामाजिक प्रस्थिति	87
	(एक समाजशास्त्रीय विश्लेषण)	
	राजकुमार वर्मा, अखिलेश शुक्ल	
12	. सन् 1942 के भारत छोड़ों आन्दोलन में विन्ध्य प्रदेश की भूमिका	93
	रोश्म सिंह चोहान	
13	. मध्यकालान भारत में कृषि-तकनीकी	98
	सामा कुमारा 	
14	. महात्मी गांधी राष्ट्रीय ग्रामीण राजगार गारण्टी योजनाः कियान्वयन	103
	समस्याए एव सुझाव समस्यी सम	
1.5		
15	्रामाण विकास में प्रधानमंत्री सड़क योजनी की अवदान- एक अध्ययन	113
	रिस्टार्शनाप जनपुप के कूलपुर तहसाल के बहादुरपुर विकास खण्ड़ के सन्दर्भ में) सिटार्श प्रिश्न विजेन जेकर सिन	
16	प्राचीन भारतीय इतिहास में दत के अभ्ययन के ग्रेन र गक्त अक्टोकन	
	संतोष कमार 'समन'	117

Scanned by CamScanner

 UGC Journal No. (Old) 2138,
 Peer-Reviewed Research Journal Impact Factor 3,543, ISSN 0975-4083
 Vol.- 19, Hindi Edition, Year-09, Sept. 2020

1

मुरिया जनजातीय समाज की वर्तमान जीवन प्रणाली के महत्वपूर्ण पक्षों में आये बदलावों का अध्ययन (बस्तर जिले के विश्वेघ संदर्भ में) «रूपिन्दर जीत कौर «किरण नुइटी

सारांश- अस्तर अंथल की प्रचलित जनजातियों में से एक मुस्यि। जनजाति है, यह जनजाति धस्तर अंधल के अलग-अलग स्थानों में निवासरत है, प्रकृति पर निर्भर वह जनजाति अपने शुरूआती काल में विकास से अनभिज्ञ रही पंरतु समयानुसार विभिन्न सभ्यताओं, धर्मो, मान्यताओं व विश्वासों के सम्पर्क व शासन द्वारा चलाई गई, योजनाओं के फलस्वरूप वर्तमान में जनजातीय जीवन प्रणाली के महत्वपूर्ण पक्ष जैसे-सामाजिक, धार्मिक, आर्थिक पक्षों में कई बदलाव दूश्टिगोचर हो रहा है। बदलाव जीवन का आवश्यक अंग है, बिना परिवर्तन के विकास सभव नही य समय की मांग ही बदलाव है, पंरतु सकारात्मक विकास ही हितकर प्रतीत होता है। जनजातीय समाज अपने सांस्कृतिक मूल्यों के कारण विश्व में अपना अलग स्थान स्थापित किये है। वर्तमान में उन सांस्कृतिक मूल्यों में परिवर्तन प्रतीत होने लगा है, जो जनजातीय पिछड़ाव की स्थिति को अंकित करता है।

मुख्य शब्द- 'जनजातीय जीवन, परिवर्तन, नबीन सभ्यता, सम्पर्क, आधुनिकीकरण,शहरीकरण, परसंस्कृति सम्पर्क

जनजातीय शब्द अपने में विशालता समेटे हुए है, जनजातीय शब्द की उत्पत्ति तथा अर्थ के विशय मे अलग-अलग विचारधाराएं है, जनजाति शब्द उन लोगों के समूह के लिए सम्बोधित किया जाता है, जो शहरी क्षेत्रों से बहुत दूर घने जंगलो, पहाड़ों और पर्वतों में रहते हों व प्रकृति के माध्यम से अपनी समस्त आवश्यकताए पूर्ण करते हों। जनजाति जिन्हे आदिवासी नाम से सम्बोधित किया जाता है, आदिवासी किसी भी क्षेत्र के मूल निवासियों को कहा जाता है, जिसकी उत्पति उसी निश्चित स्थान से हुई है, जिस स्थान पर वे जीवन निर्वाह कर रहे है। इम्पीरियल गजेटियर ऑफ इंडिया में जनजाति को इस प्रकार परिभाषित किया गया है। जनजाति परिवारों का वह संकलन है, जिसका एक अपना सामान्य नाम होता है, जो सामान्य भाषा बोलते हैं तथा जो सामान्य प्रदेश में रहता है या जो रहने का दावा करता है। वेरियर एल्विन ने जनजातियों के संबंध में कहा कि आदिवासी भारत वर्ष की वास्तविक स्वदेशों उपज है, ये ये प्राचीन लोग है जिनको नैतिक आधार व दावे हजारों वर्ष पुराने है।

जनजाति शब्द की उत्पत्ति तथा अर्थ के विशय में भिन्न -भिन्न विचारधाराएँ हैं, सन् 1981 ई. की जनसंख्या रिपोर्ट में जनसंख्या आयुक्त डॉ. एन बेन्स ने जातियों को उनके परम्परागत व्यवसाय के आधार पर वर्गीकृत किया। कृषक एवं चरवाहा जातियों की श्रेणी के अन्तर्गत उन्होने ''बन्यजातियाँ'' के नाम से एक पृथक उप शीर्षक बनाया। सन् 1901 की

० ग्रोध्वर्थ्वी, समाजआस्त्र, यस्तर विश्वविद्यालय जगदलपुर (छ.१)

^{॰॰} सहाथक प्राध्यापक, गुन्हाधुर कॉलेज, कोंण्डागाँद (छ.ग), सोध निर्देशक समाजशास्त्र वस्तर विश्वविद्धालय जगदलपुर (छ.ग)

UGC Journal No. (Old) 2138, Impact Factor 3.543, ISSN 0975-4083

जनसंख्या रिपोर्ट में उन्हें प्रकृतिवादी कहा गया। सन् 1911 ई. में उन्हें जनजाति प्रकृतिवादी अथवा जनजातीय धर्म को मानने वाले लोग कहा गया। सन् 1921 ई की जनसंख्या रिपोर्ट में उन्हें पहाड़ी एवं वन्य जनजातियों का नाम दिया गया। सन् 1931 ई. की जनसंख्या रिपोर्ट में उन्हें 'आदिम जनजाति' कहा गया। भारत सरकार अधिनियम सन् 1935 ई. में जनजातीय जनसंख्या को 'पिछड़ी' जनजतियाँ नाम दिया गया। सन् 1941 ई. की जनसंख्या रिपोर्ट में केवल जनजातियाँ कहा गया।"

52

इस प्रकार सें जनजातियाँ प्रायः प्रकृति के समीप रहकर, प्रकृति के परिवेश अनुसार स्वयं को ढालने की अनोखी विशेषता रखती है, भारत जनजातियों में समृद्ध देश में शामिल है, इसी समृद्धि में बस्तर अंचल की मुरिया जनजाति भी सम्मिलित है। मुरिया जनजाति छ.ग. राज्य के कई क्षेत्रों में निवासरत है। यह बस्तर अंचल के आस-पास बहुतायत में है। मुरिया जनजाति के सम्बध में लाला जगदलपुरी विस्तार से बताते है "मुरिया जनजाति बस्तर की आदिम जनजातियों में से एक है। शाब्दिक आधार पर देखा जाए तो जनजाति बस्तर की आदिम जनजातियों में से एक है। शाब्दिक आधार पर देखा जाए तो मुरिया शब्द संस्कृत का एक शब्द है – मूला "मूल" का शब्दार्थ होता है जड़, आरंभ और मुख्य प्रधान बस्तर के ग्रामीण क्षेत्र मे यही "मूल" शब्द उच्चारण में "मूर" हो गया। "मूर" याने प्रारम हल्बी का एक वाक्यांश लीजिये- मूरे नाजुक (सिरे से नही) और यह रहा एक संपूर्ण वाक्य – आमी धान काटुक मुरियालू से अर्थात हमने धान काटना शुरू कर दिया। "मूर" संज्ञा शब्द का विशेशण है- "मुरिया"शब्द। "मुरिया" माने मूल निवासी, बुनियादी या प्रधान।"⁴

इस प्रकार यह कहा जा सकता है कि मुरिया जनजाति बस्तर अंचल की प्रधान या मूल जनजाति है। इस जनजाति का आंरभ बस्तर के घने जंगलों से हुआ है। इस जनजाति ने स्वयं को यहां के घने जंगलों के अनुसार ढालने की अनुपम कला जीवन के आरभिंक काल से ही प्राप्त की है, इस कारण से शुरूआती काल से वर्तमान तक यह जनजाति अपना

अस्तित्व बनाये हुए है, जनजाति अपने शुरूआती काल मे प्रकृति के काफी समीप रही है। प्रकृतिमय समीपता के सानिध्य में धर्म व धार्मिक मान्यताओं व विश्वासों में प्रकृति के प्रति श्रद्धा व भय के भाव रहे है। जादु-टोना, भूत-प्रेत सम्बधित मान्यताएं व संस्कृति का क्रेंद्र घोटुल व उसकी मान्यताओं का भी विशेष महत्व है, साथ ही गोदना प्रथा व जन्म से लेकर मृत्यु तक गीतों की प्रधानता व चित्रकला, काष्ट कला के अनेक रूप जनजातीय मुरिया समाज में उपस्थित होकर इस सभ्यता को अनुपम रूप प्रदान करते हैं। इन्ही विशेषताओं के साथ देव संस्कृति की पोषक मानी जाने वाली मुरिया संस्कृति विश्व में आकर्शण का क्रेन्द्र बनी हुई है।

अध्ययन का उद्देश्य- इस अध्ययन के मुख्य उद्देश्य इस प्रकार है -1 मुरिया जनजातीय समाज की वर्तमान धार्मिक स्थिति का अध्ययन करना। 2 मुरिया जनजातीय समाज की वर्तमान आर्थिक स्थिति का अध्ययन करना। अध्ययन पद्धति- प्रस्तावित अध्ययन के लिए बस्तर जिले के परपा व केशलुर व आस-पास के क्षेत्र को चना गया है।

उत्तरदाताओं का चुनाव- अध्ययन हेतु 110 मुरिया परिवारों का चयन दैव निदर्शन पद्धति से किया गया है तथा अध्ययन द्वारा उनकी धार्मिक आर्थिक स्थिति का आंकलन किया गया है। तथ्यों के सकलन हेतु प्रयुक्त उपकरण व प्रविधि- अध्ययन हेतु साक्षात्कार अनुसूबी उपकरण व अवलोकन पद्धति का उपयोग किया गया है।

Scanned by CarbonScanner

Research Journal of Arts, Management & Social Sciences, Vol.-19, Year-09, Sept. 2020 53

वर्तमान जीवन प्रणाली में आया परिवर्तन- विकास व परिवर्तन आपस में सम्बधित है अर्थात परिवर्तन की एक दिशा विकास की ओर भी अग्रसर करती है। बस्तर की मुरिया जनजातीय समाज शुरूआती काल से बड़े ही शालीन व सरल तरीके से अपनी अनोखी संस्कृति का निर्माण कर प्रकृति परिवेश के अनुसार स्वयं को ढालकर जीवन निर्वाह करता आया है। यह जनजाति प्रकृति व आपसी सहयोग के माध्यम से सामाजिक, आर्थिक, धार्मिक, स्वास्थ्य, शिक्षा आदि सम्पूर्ण आधारों पर आत्मनिर्भर व सम्पन्न जनजाति रही है। प्रकृति की गोद में निवासरत् इस जनजाति के सम्पर्क में कई सभ्यताएं आई, मुगलों के काल में मुस्लिम संस्कृतियों के सम्पर्क में आए, तत्पश्चात् ब्रिटिश काल में ईसाई धर्म व मिशिनरियों के सम्पर्क में आए व समय-समय पर विभिन्न संतों के प्रभाव मे आकर स्वयं के प्रकृतियम धर्म से विमुख होते जनजातीय समाज वर्तमान मे मिश्रित संस्कृति के रूप मे हमारे समक्ष प्रतीत होते है। विकास की ओर अग्रसर होती संस्कृति मे कई बदलाव अनेक समस्याओं को उत्पन्न कर रही है। प्राप्त तथ्यों क विश्लेषण सारणियों में दिखाया जा रहा है।

蛃.	धार्मिक आस्था का आधार	शुरूआती का	ल	वर्तमान काल	
		आवृति	प्रतिशत	आवृति	प्रतिशत
L.	प्रकृति पूजा	110	110	40	40
2.	हिन्दू धर्म के देवी-देवताओं की पूजा	0	0	39	39
3.	ईसाई धर्म व अन्य मत	0	0	31	31
	योग	110	110	110	110

सारणी क्र. 01 आराध्य देवी देवताओ की पजा

उपरोक्त सारणी एवं रेखा चित्र के अध्ययन से ज्ञात होता है कि शुरूआती काल के सम्बध में जनजातीय समाज का मानना है कि उनके पूर्वजों द्वारा 100 प्रतिशत प्रकृति की पूजा की जाती थी। वर्तमान समय के आकड़ों के आधार पर प्रकृति पूजक 40 प्रतिशत, हिन्दू धर्म के देवी-देवता 39 प्रतिशत एवं 31 प्रतिशत ईसाई धर्म अपनाने वाली जनसंख्या का है। विजय शंकर उपाध्याय, विजय प्रकाश शर्मा के अनुसार ईसाईयों के सम्पर्क मे आने वाली

UGC Journal No. (Old) 2138, Impact Factor 3.543, ISSN 0975-4083

जनजातियों के बहुत से सदस्य ईसाई बन गये और हिन्दू धर्म के सम्पर्क मे आने से अनेकों सदस्यों ने हिन्दू धर्म अपना लिया इससे यह देखा गया कि एक ही जनजाति हिन्दू अथवा ईसाई हो गये। अत: प्रकृति प्रेमी व सहृदयी आदिवासी जनजातीय समाज पेड़, पौधों व अपनी ही मान्यताओं से सम्बधित रहा जनजातीय सभ्यता ईसाई मिशनरियों के चरमोत्कर्ष प्रचार के कारण व हिन्दू धर्म के सम्पर्क मे आकर स्वयं के धर्म को हेय दुष्टिर से देखने लगे, इसका प्रमुख कारण ईसाई धर्म प्रचारकों का मिथ्या प्रचार व शहरीकरण, नगरीकरण अशिक्षित भोले-भाले ग्रामीण जनजातीय समाज को भ्रमित कर स्वयं की संस्कृति से विमुख होती गई तथा वर्तमान पीढ़ी संस्कृति पिछड़ाव की कगार पर आ गई है।

सारणी क्र. 02

क्र.	झाड़ फूक व तन्त्र	शुरूआत	ो काल	वर्तमान काल		
Т	मंत्र के माध्यम से उपचार	आवृति	प्रतिशत	आवृति	प्रतिशत	
1	हाँ	87	79	36	33	
2	नही	23	21	74	67	
	योग	110	100	110	100	

बीमारियों के उपचार में तन्त्र मंत्र झाड़ -फूक के माध्यम से उपचार

उपरोक्त सारणी क्र. 02 से ज्ञात होता है कि, मुरिया जनजातिय समाज के अपने प्रारभिंक काल मे बिमारियों के उपचार हेतु सर्वप्रथम जादू-टोना व झाड-फूक पर विश्वास किया जाता रहा जिसका सर्वाधिक प्रतिशत 79 है, तथा उपचार तंत्र-मंत्र के माध्यम से नही होता था ऐसा मानने वाले 21 प्रतिशत है उनका मानना है कि औषधियों का प्रयोग भी किया जाता था। वर्तमान काल में शिक्षा के विकास के कारण स्वरूप वर्तमान पीढ़ी शिक्षित है, इस कारण जादू टोना पर विश्वास ना करने वालों का प्रतिशत सर्वाधिक 67 है। ग्रामीण अचंत होने के कारण कुछ परिवार आज भी इसे अपनाते है, जिसका प्रतिशत 33 है, परंतु इसका प्रतिशत कम है।

धार्मिक पिछड़ाव की स्थिति के साथ-साथ आर्थिक पिछड़ाव की स्थिति ^{मे भी} जनजातीय समाज को देखा जा सकता है। Research Journal of Arts, Management & Social Sciences, Vol.-19, Year-09, Sept. 2020

सार	रणा क्र. 03	
बेरोजगारी व	भूखमरी की समस्या	

क्र.	बेजगारी व भूखमरी की	शुरूआती काल		वर्तमान काल		
	समस्याँ	आवृति	प्रतिशत	आवृति	प्रतिशत	
1	हॉ	0	0	81	74	
2	नही	110	100	19	17	
	योग	110	100	110	100	

उपरोक्त सारणी एवं रेखाचित्र के विश्लेषण सें ज्ञात होता है कि शुरूआती काल में बेरोजगारी, भूखमरी जैसे कोई समस्या नही थी, आय प्राप्ति व जीवन निर्वाह के साधन प्रकृति में आसानी सें उपलब्ध थे, जिस कारण शुरूआती काल में बेरोजगारी व भुखमरी जैसी समस्या 0 प्रतिशत थी, शत् प्रतिशत उत्तरदाता इस मत पर सहमत है, परंतु वर्तमान समय में शिकार पर प्रतिबंध है व जंगलों की कटाई व भूमि पर शासन का नियत्रंण व बाहर सें आये लोगों द्वारा भूमि हथियाने सम्बधित समस्याएं है। जिस कारण वर्तमान समय में 81 प्रतिशत बेरोजगारी व भुखमरी की समस्या ग्रसित है 19 प्रतिशत जनसंख्या मानती है कि उनके गांव क्षेत्र में यह समस्या नही है।

विजय शंकर उपाध्याय, विजय प्रकाश शर्मा (2009) "नगरों के सम्पर्क में आने के पूर्व कम सें कम जनजातियों की आर्थिक स्थिति बुरी नही थी, वे अपनी आवश्यकताओं की पूर्ति वन सम्पति लघु उद्योग द्वारा कर लेते थे, किंतु जब से इन लोगों ने नगरों से सम्पर्क स्थापित किया तब से जनजातियों के वंशानुगत गृह उद्योग का विनाश हो गया।"

55

उपरोक्त सारणी क्रमांक 03 के आंकड़ों के अध्ययन से ज्ञात होता है कि वर्तमान समय में कृषि की स्थिति दयनीय हो गई है इसके सम्बध में 88 प्रतिशत उत्तरदातााओं ने सहमति प्रगट की है। कृषि सम्बधित अच्छी स्थिति के सम्बध में 12 प्रतिशत उत्तरदाता परिवारों ने सहमति प्रगट की है। वर्तमान समय में शिक्षित युवा वर्ग कृषि कार्यों के प्रगति रूचि ना लेने के कारण कृषि की स्थति वर्तमान में पिछड़ती जा रही है।

निष्कर्ष- परिवर्तन जीवन का अनिवार्य अंग है बिना परिवर्तन एक सफल जीवन को कामना नहीं कि जा सकती पंरतु जनजातीय समाज जो कि अपनी संस्कृति विभिन्नता के लिए विश्व में अलग स्थान प्राप्त किये है। उस समाज में वर्तमान समयानुसार परिवर्तन को स्वीकार करते हुए, कुछ नकारात्मक पक्ष भी दृष्टिगोचर हुए है, जिसमें सामाजिक, आर्थिक, धार्मिक, कलात्मक पक्ष शामिल है, इन परिवर्तनों में धर्म प्रमुख रहा है, धर्म की स्वतन्त्रता हमारे भारतीय समाज द्वारा सभी को प्रदान की गई है, परंतु वर्तमान मे कुछ कारणों के तहत मोले- माले जनजातियों को धर्म के नाम पर चमत्कार प्रदर्शन के माध्यम से भ्रमित किया जा रहा है, वही दूसरी ओर शुरूआती काल की आर्थिक आत्मनिर्भरता वर्तमान में बेरोजगारी का विकराल रूप धारण करने को विवश है। इसी प्रकार संस्कृति के अन्य पक्षों में जनजातीय समाज को अपनी स्वयं की संस्कृति से पिछड़ाव की ओर अग्रसर किया जा रहा है, तथा जिन जीवन मूल्यों से जनजातीय समाज अपने अस्तित्व विश्व में स्थापित है, उन जीवन मूल्यों से आधुनिक मूल्यों के टकराव की स्थिति में वर्तमान पीढी विकास की दौड़ में शामिल होकर R

Research Journal of Arts, Management & Social Sciences, Vol.-19, Year-09, Sept. 2020 57

संस्कृति के पक्षो से पिछड़ती प्रतीत हो रही है। ऐसी स्थिति में आवश्यकता है, उन व्यवस्थाओं की जो विकास को आत्मसात कर संस्कृति की आत्मा की रक्षा कर वर्तमान पीढ़ी को संस्कृति से विमुख ना होने दे। इसी मत की सहमति प्रगट करते शिव कुमार पाण्डेय के अनुसार "आदिवासी समाज अपने पुराने दिन की बांट देख रहा है, उसके दिन बहुरेंगे इसी आशा में कुछ ऐसा करने के प्रयास में है कि, उसका सामाजिक संगठन फिर से बने और एक बार गाँव में घोटुल में फिर मांदर की थाप हो लोक गीत की स्वर लहरी गुंजायमान हो।" इस प्रकार सें जरूरत है कुछ प्रयासों की जिसके माध्यम सें मुरिया जनजातीय समाज संस्कृति का विस्तार भावी पीढ़ी को हस्तांतरित कर सके।

सन्दर्भ ग्रंथ सूची-

- 1. Imperial Guzzetiar, pp.313-321
- वेरियर ऐल्विन (1943): "द अबोरिजिनलस्" ऑक्सफोर्ड युनिवर्सिटी प्रेस, बम्बई पृ. -7
- 3. Census of India (1961), Vol.1 Part V.B (II) PP. 2-3
- जगदलपूरी लाला (2016): "बस्तर इतिहास व संस्कृति" मध्यप्रदेश हिन्दी ग्रंथ अकादमी भोपाल प.92.93
- उपाध्याय विजय शंकर, शर्मा विजय प्रकाश (2009) : "भारत की जनजातीय संस्कृति" मध्यप्रदेश हिन्दी ग्रंथ अकादमी, भोपाल पृ.159,60
- उपाध्याय विजय शंकर, शर्मा विजय प्रकाश (2009) : "भारत की जनजातीय संस्कृति "मध्यप्रदेश हिन्दी ग्रंथ अकादमी, भोपाल पृ.165
- पाण्डेय शिव कुमार (2019): "बस्तर की मुरिया जनजाति" विशाल कौशिक प्रिंटर्स, दिल्ली पृ. 167

Heteroatom-Based Compounds as Sustainable Corrosion Inhibitors: An Overview

Dakeshwar Kumar Verma¹ · Yeestdev Dewangan¹ · Amit Kumar Dewangan¹ · Ashish Asatker²

Received: 9 July 2020 / Revised: 9 July 2020 / Accepted: 10 November 2020 © Springer Nature Switzerland AG 2020

Abstract

Heteroatoms (such as phosphorous, sulphur, oxygen and nitrogen) containing organic molecules exhibit remarkable efficiency towards corrosion inhibition. Their efficiency is attributed to the presence of lone pair of electrons and pi electrons in the molecule, due to which they are easily deposited on the metal surface. However, the organic compounds containing less electronegative heteroatoms generally show higher inhibition efficiency (IE) due to the facile migration of lone pair of electrons. Acidic solutions are widely used as electrolyte medium. The value of ΔG (Gibbs adsorption energy) reveals the nature of the inhibitors adsorb to the metal surface. Gravimetric and electrochemical analyses are extensively applied for the determination of corrosion inhibition. Similarly, surface analysis and theoretical investigation are also applied for supportive evidences. The purpose of the present review is to highlight the heteroatom-based potential corrosion inhibitors.

Keywords Heteroatoms · Acidic solution · Corrosion inhibition · Adsorption · Surface chemistry · Electrochemistry

Abbreviations

WL	Weight loss
EIS	Electrochemical impedance spectroscopy
PDP	Potentiodynamic polarization
OCP	Open circuit potential
SEM	Scanning electron microscopy
EDS	Electron dispersion x-ray spectroscopy
QCC	Quantum chemical calculation
DFT	Density function theory,
XPES	X-ray photoelectron spectroscopy
MDS	Molecular dynamic simulation
XRD	X-ray diffraction
FTIR	Fourier transform infrared
AFM	Atomic force microscopy
EDXA	Energy dispersive x-ray analysis
GCMS	Gas chromatography mass spectrophotometer
HE	Hydrogen evolution
CTAB	Cetyl Trimethyl Ammonium Bromide

Dakeshwar Kumar Verma dakeshwarverma@gmail.com

¹ Department of Chemistry, Govt. Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh 491441, India

² Department of Chemistry, Govt. Gundadhur Postgraduate College, Kondagaon, Chhattisgarh, India

1 Introduction

Corrosion arises as an electrochemical process due to a potential difference on the metal surface. Various cleaning processes like acid cleaning, scraping, oil-well cleaning and acid pickling processes require aggressive and corrosive media which causes damage on metallic surface [1-3]. To prevent the metallic loss, use of corrosion inhibitor is essential. NACE reported that the worldwide loss due to the corrosion is approximately 2.7 trillion dollars per year which is about 4.3% of total GDP (gross domestic product [4, 5]. The efficiency of any organic compound depends on its adsorption property onto the surface of metal. Heteroatoms (S, P, O, N) containing molecules have lone pair electrons that facilitate the deposition of molecules onto the metal surface having empty d orbitals. In this way, these organic compounds form a sheet/layer over the metal surface and protect from corrosion [6–10]. A large number of organic compounds are used as inhibitors which are non-toxic, environmental friendly, cheap and highly efficient even in small quantity [11]. Nitrogen-containing organic compounds have been studied by many scientists. Research has shown that the organic compounds in which nitrogen is present with the aromatic ring show high efficiency as corrosion inhibitors [12–15]. Similarly, organic molecules containing P, S and O have been studied extensively, in which corrosion inhibition efficiency is most prominently found in organic compounds

containing phosphorus [16–19]. Studies focusing on the collection of some major works suggest that the inhibition efficiency of compounds containing nitrogen, sulphur, oxygen and phosphorus heteroatoms, in which electronegativities of these atoms are in the order phosphorus = 2.10 > Sulphur = 2.60 > nitrogen = 2.98 and oxygen = 3.48, which is just reverse to their electronegativity order [ref]. Organic molecules exhibit good inhibition efficiency when they contain polar functional group like -OH, -OR, -SH, -SR, -CONH₂, -COOH, -COOR, -COR, -COCl, -COBr, -COI, -S-S-, -SOR, -PO3, -PO₄ by offering strong bonding with metallic surface [20–22]. Electrochemical and gravimetric analyses are commonly used techniques for corrosion monitoring. Gravimetric analysis is normally done for primary investigation to find out the efficiency of these inhibitors. SEM and EDS studies are used for the determination of changes on metal surface and composition on metal surface, respectively. Similarly computational calculations such as MD simulation and density function theory (DFT) are also applied to support the experimental findings [23-26]. Figure 1 represents the general criteria for a good inhibitor.

2 Adsorption Mechanism of Inhibitors

Adsorption of inhibitor molecules on metal surface can be regarded as donor-acceptor mechanism in which heteroatoms and pi electron containing inhibitor molecules donate unshared electrons towards vacant d orbitals of metallic surfaces. Hetero atoms (N, P, S, O) containing organic compounds commonly react like nucleophiles in chemical reactions. Generally, due to their electron donation tendency, they generally behave like Lewis bases. Corrosion inhibitor molecule with heteroatom(s) contain lone pair of electrons, which can be shared to vacant d orbital(s) of metal cation, leading to the formation of a protective layer on the metal surface. The effective interaction between molecules and metal depends on the chemical character such as polar properties, pi bonds in the inhibitors and vacant sites in metallic surface [27]. Inhibitor molecules are strongly absorbed on the metal surface by these polar groups and pi electrons. Usually, anion of electrolyte in corrosive medium forms a protective layer onto metal surface by which protonized organic compounds are attracted via electrostatic interaction to form protective layer and thus protect the metallic surface [28-30]. It has been established that the negative ΔG reveals strong interaction between metal and inhibitor

[31]. Adsorption of molecules may be chemical or physical type. In general, a chemisorption is one in which the value of ΔG is ≤ 40 kJ/mol, whereas if the value of ΔG is ≤ 20 kJ/mol, it is called a physisorption. The ΔG value between -20 and -40 kJ/mol indicates a mixed type nature of inhibitors. Previous studies reveal that inhibitor molecules are deposited onto metal surface without modifying the mechanism of the corrosion process and obeying Langmuir adsorption isotherm [32–35]. The different isotherms were characterized by the following given mathematical model [36]:

$$Langmuir isotherm = \frac{C}{K} = \frac{1}{K_{ads}} + C$$
(1)

Temkin isotherm =
$$log\left(\frac{C}{L}\right) = logK_{ads} - g\theta$$
 (2)

Frumkin isotherm =
$$log\left(\frac{\theta}{(1-)C}\right) = logK_{ads} - g\theta$$
, (3)

where K_{ads} is the adsorption constant; θ is the surface coverage; *C* is the inhibitor concentration.

Various techniques are applied in order to explain nature of inhibitors, their adsorption behaviour, mechanism and degree of adsorption onto the metallic surfaces in various corrosive media. Recently, DFT and MD simulation analyses have extensively been used for theoretical insight into the experimental results. Furthermore, MD simulation reveals the flat orientation of inhibitor molecules onto metallic surface providing the adsorption behaviour of inhibitors. Similarly, DFT calculation correlated the structure and chemical reactivity of inhibitors towards metal. Srivastava et al. reported the amino acid-based imidazolium zwitterions (AIZs) as potential green corrosion inhibitors in acidic medium. Figure 2 represents the various DFT parameters like HOMO, LUMO for AIZs in protonated form and Fig. 3 shows the MD simulation of AIZs in which inhibitor flat orientations exhibited good co-relation with E_{int} values [114].

3 Organic Corrosion Inhibitors

3.1 Organic Compounds as Mild Steel Corrosion Inhibitor

Heteroatoms (O, P, N, S) containing organic molecules have been extensively studied for the MS corrosion

Fig. 2 The HOMOs, LUMOs and molecular electrostatic potential (MEP) structures of protonated AIZs (Copyright @ Elsevier 2017)

Fig. 3 Top and side views of the final adsorption of the AIZs onto Fe (110) metal surface in corrosive solution (Copyright @ Elsevier 2017)

inhibitor. Jia et al. investigated the inhibition properties of L-Cysteine derivatives namely NASHCYS, NACYS, NAS-BCYS and CYS in 1 M HCl corrosive solutions for mild steel. DFT, MD simulation, PDP and WL methods were used for the investigation. Results revealed that the NAS-BCYS acts as the most efficient corrosion inhibitor among studied inhibitors [37]. Muthukrishnan et al. tested the inhibition efficiency of CDHBAP against mild steel in corrosive solution of 1 M H_2SO_4 by applying AC impedance, PDP and WL techniques. Results revealed that CDHBAP showed 99% IE at 100 ppm concentration. SEM and FTIR confirmed the formation of protective barrier over metal surface [38]. Ousslim et al. investigated mild steel corrosion inhibition performance of two piperazine derivatives P1 and P2 in aggressive solution of 3.9 M HCl using PDP and WL techniques where inhibitor P2 reported as cathodic nature showed 92% IE at 10⁻³ M concentration following Langmuir model [39]. Mohamed studied Quinine as corrosion inhibitor for LCS at hydrochloric acid solution using PDP and EIS methods and reported inhibition efficiency of 96% at 0.48 mM concentration [40]. Rajeswari et al. studied the inhibition performance of three Schiff bases on cast iron in aqueous solutions of NaCl, NH₄Cl, NaOH and HCl. Synergism of KI was done to study the additive effect. Electrochemical measurements and weight loss method were used for this purpose. Results revealed that at low temperature inhibition efficiency decreases which increases with increase in concentration. It was further noticed that with and without KI the adsorption of Schiff bases obeyed Langmuir adsorption isotherm [41]. EIS and PDP analyses revealed that amino acids with more alkyl length effectively inhibit the metal corrosion [42]. Organic inhibitors namely MIHT and BIHT showed inhibition efficiencies of 91.5% and 98.3%, respectively, at their optimum concentrations and act as mixed nature [43]. Inhibition efficiency of 90.5% was exhibited by Inh III ($R = -OCH_3$) at optimum concentration (303 K) [44]. Gemini surfactant showed %IE of 94.2% at high concentration [45]. High inhibition efficiency (89.2%) was shown by HAcpMTSc at 300 ppm (300 K) [46]. Alginate surfactant Inhibitor showed 96.27% inhibition efficiency in acidic solution and acts as a mixed type inhibitor [47]. BTI shows %*IE* 88% at 1×10^{-3} M concentration [48]. Inhibition efficiency of 94% at high concentration has been reported from studied inhibitor [49]. Yadav et al. reveal the inhibition efficiency order of MPTS > CPTS of spiropyrimidinethiones derivatives [50]. EIS results showed that RAIM (rosin amide imidazoline) exhibits 97.0% inhibition efficiency in 200 ppm at 40 °C temperature [51]. CMO showed % *IE* of 97% and 98% in 1 N HCl and 1 N H₂SO₄, respectively [52]. DTP and TG exhibited IE of 85.90% and 77.90%, respectively [53]. Synergistic effect showed the IE of 97.32% in 30 mg/L at low phosphorous content (0.79–0.87/L) [54]. BIMDS displays IE of 98.6% in 0.5 M H₂SO₄ [55]. Cysteine-based Shiff's bases namely CBS-1, CBS-2 and CBS-3 were evaluated as green corrosion inhibitors in which CBS-3 acts most effectively among studied inhibitors [56]. At 400 ppm, concentration inhibitor showed % IE of 95% [33]. Percentage IE of inhibitors PPC-1 and PPC-2 at optimum concentrations is 92.4% and 82.1%, respectively [57]. Similarly, IE of 93.98% was exhibited by CLX at 303 K [58]. Silver NPs and C12P showed IE of 76.44% (375 ppm) [59]. Soltani et al. reveal that PTMO was found to be less effective than PTM and PTH towards corrosion inhibition [28]. Xianghong Li et al. investigated the pyrimidine derivatives as corrosion inhibitors where among five pyrimidine compounds, MP exhibited highest inhibition efficiency of 99.1% in 0.1 M HNO₃ for CRS [60]. Lin Wang et al. evaluate 2-Mercaptobenzimidazole investigated for mild steel corrosion inhibitor in which 98% (IE) was obtained at optimum concentration of inhibitors [61]. All these studies are in good agreement including DFT, MD simulation and wet chemical analysis [62]. 95.26 of % IE was shown by inhibitor Pen G at $C \times 10^{-4}$ ppm conc. (303 K) [63]. The inhibition efficiency of 69.40% was obtained for compound 1 at optimum concentration (11×10^{-4}) [64]. EIS study revealed that inhibitor 2 shows IE of 97% at 100 ppm at 300 K [65]. The outcomes of DFT calculation suggest ELUMO, EHOMO, hardness, polarizability, charges and dipole moment which help to correlate the structure with IE [66]. Study revealed that the inhibition efficiency of inhibitors follows the order: thiobenzamide > thiourea > thioacetamide [67]. 2A5MT displayed higher IE of 99.3% as compared to 2MT [68]. TH showed IE of 98% at 6×10^{-3} concentration [69]. WL, PDP and EIS analyses showed good agreement towards inhibition efficiency [70]. 2 ethylamine thiophene exhibited maximum inhibition efficiency of 98% (5×10^{-3} M) [71]. AP4PT was found more efficient towards corrosion resistance among all studied Thiourea derivatives [72]. DPTU exhibited good corrosion inhibition as compared to DBTU towards metal [73]. Potential shifted towards positive direction showed the inhibitive nature in case of MPA & TMPA [74]. EIS exhibited the Inhibitive action of 2UEI for metal in 3% NaCl solution [75]. Among the studied ethylamino imidazoline derivatives, 2-ATB showed the highest inhibition efficiency and 2 inhibitors followed Langmuir and 3 inhibitors followed Tempkin adsorption isotherm, respectively [76]. The efficiencies of amino acids were estimated using EIS, MD simulation, AFM, DFT and ICP-AES and exhibited good correlation [77] (Table 1).

3.2 Organic Compounds as Aluminium Corrosion Inhibitor

Heteroatoms (O, P, N, S) containing organic molecules have extensively been studied as the aluminium corrosion

Table 1Molecular structures,nature of adsorption and resultsof heteroatoms containingmolecules for mild steel inaggressive media

S N	Molecular structure	Metal/aggres sive media	Methods applied for analysis	Nature of molecules	Outcomes	Ref.
1	$HO \rightarrow OH$	Mild steel/ I M HCl	EIS, PDP & DFT	Mixed/ Langmuir model	EIS and PDP analysis reveals that amino acids with more alkyl length effectively inhibits the metal corrosion	42
2		N 80 steel/ 15% HCl	EIS, PDP, XPS, DFT & MD simulation	Mixed/ Langmuir ads. isotherm	Organic inhibitors namely MIHT and BIHT shows inhibition efficiency of 91.5% and 98.3 % at their optimum concentration and acts as a mixed nature	43
3	R=H,-CH ₃ ,-OCH ₃	MS/ 15% HCl	WL, EIS, MD & SEM	Mixed/ Langmuir model	90.5 % <i>IE</i> exhibited by Inh III (R = -OCH ₃) at optimum concentration (303 K)	44
4	Ho Ho H_3C C12 CYS H_3C C12 CYS H_4C $CH_2]_{11}CH_3$ H_5C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C $CH_2]_{11}CH_3$ H_4C CH_4C H_4C CH_4C H_4C CH_4C H_4C CH_4C H_4C CH_4C H_4C H_4C CH_4C H_4C	MS/ 1M HCl	WL, AFM, EIS, SEM, EDS and computationa l calculation	Mixed Type/ Langmuir model	Gemini surfactant shows % E of 94.2% at high concentration	45
5		MS/ 1M HCl	EIS, WL, UV-VIS, FTIR, and EDS	Cathodic type/ Langmuir ads. isotherm	High inhibition efficiency (89.2 %) is shown by HAcpMTSc at 300 ppm (300 K)	46
6		Carbon steel/ 1.0 M HCl	EIS, WL, EDX, SEM, FTIR & UV- Vis	Mixed-type/ Langmuir ads. isotherm	Inhibitor shows 96.27 % inhibition efficiency in acidic solution and acts as a mixed-type inhibitor	47

Table 1 (continued)

7	C A S C	CS/ 1M HCl	EIS, WL & DFT	Mixed nature/ Langmuir's ads. isotherm	BTI shows % <i>IE</i> 88% at 1×10 ⁻³ M concentration	48
8		Poly and nano crystalline iron in 0.5 M H ₂ SO ₄	EIS, MD & DFT	Mixed Type	94 % IE at high concentration has been reported	49
9	R + C + O + NH + C + O + NH + C + O + NH + C + O + O + O + O + O + O + O + O + O	MS/ 15% HCl	EIS, WL, AFM, FTIR & DFT	Mixed nature/ Langmuir's ads. isotherm	Inhibition efficiency follows the order as MPTS > CPTS.	50
10	CPTS, MPTS	P110 & N80 CS/ CO ₂ water	PDP, EIS, AFM & SEM	Mixed-type	EIS results shows that RAIM (rosin amide imidazoline) exhibit 97.0 % inhibition efficiency in 200 ppm at 40° temperature	51
11	R = H, -OH Abb. PMO, HMO SH Abb. CMO	M/ 1M HCl and 1N H ₂ SO4	Weight loss and EIS	Cathodic type/ Temkin's ads. isotherm	CMO shows % IE of 97% and 98% in 1N HCl and 1N H ₂ SO4 respectively	52
12	Abb. TG	MS	QSER and ANN	-	DTP and TG exhibited % IE of 85.90 % and 77.90% respectively	53
	Abb. DTP					
13	$(HO)_{100}^{(OO)} H \xrightarrow{OO} (H) OO$	Carbon steel	WL, PDP, EIS, EDX & AFM	Mixed-type	Synergistic effect shows the %lE of 97.32 % in 30 Mg/L at low phosphorous content (0.79-0.87/L)	54
14	BIMDS	MS/ 1 M HCl	EIS and WL	Mixed nature/ Langmuir's ads. isotherm	BIMDS displays %IE 98.6% in 0.5 M H ₂ SO ₄	55
15	$\begin{array}{c} R_1 \\ HO \\ HS \\ CSB: 2 R_1 = OCH_3 R_2 = OH \\ O \\ CSB: 2 R_1 = OH_3 R_2 = OH \\ O \\ R_2 \\ CSB: R_1 = H, R_2 = OCH_3 \\ O \\ H \\ SH \\ O \\ O \\ O \\ O \\ O \\ SH \\ O \\ $	Mild steel/ 1M HCl	SEM, AFM, EIS & DFT	Mixed/ Langmuir ads. isotherm	Cysteine based shift's bases namely CBS-1, CBS-2 & CBS-3 evaluated as green corrosion inhibitors in which CBS-3 act effectively among studied inhibitors	56

Table 1 (continued)

16	0	MS/1M HCL	WI PDP &	Mixed/	At 400 npm	57
10			EIS	Langmuir's ads. isotherm	At 400 ppm concentration inhibitor shows %IE of 95%	51
	L → NH₂ S → NH₂					
17		Steel (N80) / 15% HCl	EIS, WL, SEM AND DFT calculation	Cathodic/ Langmuir's ads. isotherm	% <i>IE</i> of inhibitors PPC- 1 & 2 at optimum concentration are 92.4% and 82.1% respectively	58
18		MS/ 0.1M H ₂ SO ₄	WL,Thermo- metric & quantum chemical study	Langmuir's ads. isotherm	% IE of 93.98 exhibited by CLX at 303K	59
19	O ^{√[CH₂]₁₂SH}	CS/ 1 M HCl	WL, PDP, EDS, FTIR & DFT	Mixed Type/ Langmuir's ads. isotherm	Silver NPs and C12Pshows IE of 76.44% (375 ppm)	60
20	R HN NH SH R = -H, -CH3, -OCH3	MS/ 1 M H ₂ SO ₄	PDP, WL, EDS, SEM & DFT calculations	Mixed/ Langmuir's ads. isotherm	PTMO is less effective than PTM and PTH towards corrosion inhibition	61
21		Cold rolled steel (CRS)/ 0.1 M HNO ₃	EIS, PDP, WL, SEM, EDS and theoretical calculation	Mixed nature/ Langmuir's ads. isotherm	Among five pyrimidine compounds MP exhibited higher inhibition efficiency of 99.1% in 0.1 M HNO3 for CRS	62
22	N N H Abb. MBI	MS/ 3 M HNO3	WL, EIS and PDP	Langmuir's ads. isotherm	% IE of 98% obtained at optimum concentration of inhibitors	63
23	Abb. PMQ Abb. MAQ Abb. MMQT	MS	DFT & MD simulation	-	All these studies are in good agreement including DFT to MD simulation and wet chemical analysis	64
24		MS/ 0.1 & 2.5 M HCl	GA & DFT	Langmuir's ads. isotherm	95.26 of % IE shows byinhibitor Pen G at C x 10 ⁻⁴ ppm conc. (303 K)	65
25	R + S + S + S + S + S + S + S + S + S +	Stainless steel / 3 M HCl	WL & EIS	Mixed nature/ Temkin	Good inhibition efficiency of 69.40% obtain for compound 1 at optimum concentration (11x10 ⁻⁴)	66

Table 1 (continued)

26	$ \begin{array}{c} & & & \\ & & & $	MS/I M HCI	WL, EIS, RAMAN, UV-Vis, FTIR, SEM- EDS, WAXD	Miked/ Langmuir model	EIS study reveals that inhibitor 2 shows %IE of 97% at 100 ppm at 300 K among the studied inhibitors	67
27	1 benzoyl-3,3-diethylthiourea	MS/1 M HCl	DFT & WL	Mixed/	The outcomes of DFT	68
	$H_{2}N - \begin{pmatrix} P \\ P$			Langmuir	calculation related to ELUMO, EHOMO, hardness, polarizability, charges and dipole moment	
28	$ \begin{array}{c} S \\ H_2N \\ CH_3 \\ H_2N \\ NH_2 \\ H_3C \\ Ph \\ Abb. TA, TU, TB \end{array} $	MS/ 0.1 M H ₂ SO ₄	EIS, PDP & DFT		Study reveals the inhibition efficiency of inhibitor as follow: thiobenzamide > thiourea > thioacetamide.	69
29	NH2 NH5 N HS N S Abb 2A5MT and 2MT	MS/ 1 M H ₂ SO ₄	EIS, PDP, AFM, LPR, SEM & DFT	Mixed/ Langmuir	2A5MT displays higher % <i>IE</i> of 99.3% as compared to 2MT	70
30	NH.	MS/1 M HCl	EIS, PDP,	Mixed Type	TH shows optimum %	71
	Abb. TBA		and DFT		IE 01.98% at 6 X 10"	
31	[CH₂]₀CH₃ SH	CS/ HCl	EIS, PDP & WL	Mixed/ Langmuir	WL, PDP and EIS analysis shows good agreement towards inhibition efficiency	72
32	S-	Steel/ 0.5 M	FIS W/I 0.	Frunkin	2 ethylamina thionhana	72
52	S- L- Ethylamine thiophene (T1) 3- Ethylamine thiophene (T2)	H ₂ SO ₄	PDP	Adsorption isotherm	 2 entyramme thophene exhibited maximum inhibition efficiency of 98% (5×10⁻³ M) 	/3
33	H R H R H H H H H H H H H H H H H	MS/ 0.5 M H ₂ SO ₄	WL, QSAR, gasometric & DFT	Langmuir's ads. isotherm	AP4PT is more efficient towards corrosion resistance among all inhibitors	74
34	Abb DBTU	CS/ 1 mL HC1	EIS, PDP, DFT & SEM	Mixed/ Langmuir	DPTU exhibited good corrosion inhibition as compared DBTU toward metal	75

Table 1 (continued)

35	HO P N S HO TMPA	CS/sea water	EIS, EDS, SEM & FTIR	Langmuir ads.	Potential shifted towards positive direction shows the inhibitive nature of MPA & TMPA	76
36	Aundecyl-1-ethylamino imidazoline	MS/ CO ₂ saturated 3% NaCl corrosive solution	PDP, EIS & 1 SEM	Tempkin ads. isotherm	EIS exhibited the Inhibitive action of 2UEI for metal in 3% NaCl solution	77
37	$H_{2}^{H} \rightarrow H_{2}$ 3-amino H,2.4 rizole $H_{2}^{H} \rightarrow H_{1}$ 2-amino H,4 hiadiazole $H_{2}^{H} \rightarrow H_{2}^{H}$ 2-amino Sinderzimidazole $H_{2}^{H} \rightarrow H_{2}^{H}$ 5-foldoly J-1.3.4- triazole $H_{2}^{H} \rightarrow H_{2}^{H}$ 3-amino-Sinderdy Horzoto L.2.44 rizzole	Steel/ 2.5 & 3.5 NaCl	EIS, PDP & SEM	Langmuir ads	Among the studied Inhibitors 2-ATB shows higher inhibitor efficiency and 2 inhibitors follows and 3 inhibitors follows Tempkin adsorption isotherm	78
38	(S)-2-aminopropanoic acid NH ₂ S-methyl cysteine H ₂ NIIII	Iron/ 1 M HCl	EIS, MD simulation AFM, ICP- AES & DFT	Mixed/ Langmuir model	The efficiency of amino acids were estimated using E15, MD simulation, AFM, DFT & ICP-AES and exhibited good correlation	79

inhibitors. DFT calculation supported the efficiency of TU molecules (CTCV, PDOS and IDD) towards corrosion inhibition [78]. Para-substituted aromatic amines displayed maximum inhibition efficiency of 84.4% at 10^{-2} m conc.[79]. 92% of *IE* was calculated by EIS at 100 ppm concentration of inhibitor HCS [80]. PDP and SEM analyses towards inhibition efficiency of HF exhibited good correlation with DFT [81]. ATAT inhibitor molecules exhibited good inhibition efficiency towards metal corrosion [82]. Inhibitor (ATAT) showed IE of 86.1% at 5 mM conc.[83]. % *IE* of 91% was exhibited by DISOTU at optimum concentration [84]. DFT calculation showed the following increasing order of corrosion inhibitors as PBTA > TBTA > PBA > PAA, which also shows good agreement towards corrosion inhibition efficiency [85] (Table 2).

3.3 Organic Compounds as Copper Corrosion Inhibitor

Heteroatoms (O, P, N, S) containing organic compounds have extensively been studied for the copper corrosion inhibition. Study on benzenethiol derivatives revealed their good inhibition efficiency towards copper corrosion [86]. EIS revealed that the Methimazole inhibitors uniformly deposited on copper surface (IE = 91.2%) [87]. Open circuit potential performed primarily for electrode/electrolyte interface analysis in the presence of Sulfathiazole [88]. Analysis showed the good corrosion resistivity of ATMT towards copper surface [89]. MOTBI molecules exhibited IE of 98.4% at 10 mM concentration [90]. EIS, PDP and WL analyses exhibited the good inhibition property of cys (amino acid), when applied towards metal corrosion in acidic medium [91]. DMTD acted as effective corrosion inhibitor towards copper at 7.5 mM concentration [92]. PDP determined the cathodic type reaction of DOTBT on copper surface [93]. Raman analysis showed the blanket sheet of ATT molecules adsorbed on to metal (copper) surface, responsible for the corrosion inhibition [94]. MMPB exhibited inhibition efficiency of 92.7% and 96.6%, respectively, as temperature increases and extended time [95]. EIS measurement showed that cysteine exhibits IE of 95.00% (5 mM) [96]. EIS and PDP study showed that SAM film on metal surface had 98.22% inhibition efficiency [97]. Cyclic voltammetry correlated electrochemical data with efficiency of inhibitors towards corrosion inhibition [98]. EIS studies revealed that 1 mmol/L of APDTC shows 98.7% inhibition efficiency [99]. EID showed the IE between 50 and 90% range

Table 2 Molecular structures, nature of adsorption and results of inhibitors for in aluminium in different Media.

S N	Molecular structure	Metal/agg ressive	Methods	Nature of adsorption	Results of study	Ref
		media		uusoipiion		•
1		Aluminum/ HCl	DFT, PDOS, CTCV & IDD	Cathodic type / Langmuir's ads. isotherm	DFT calculation supported by studied analysis (CTCV, PDOS and IDD) support reveals the efficiency of TU molecules towards corrosion inhibition	80
	$R_{1} = CH_{3}, C_{2}H_{5}, C_{3}H_{7}, CH_{2}Ph, ally$ $R_{2} = H, CH_{2}CH_{2}, CH_{3}$	Ŀ				
2	$N \qquad S \\ H \qquad NH_2$	Aluminium/ 1 M Nitric acid	EIS & DFT	Mixed type/ Langmuir's ads. isotherm	Para substituted organic molecules of amines displays maximum inhibition efficiency of 84.4% at 10 ⁻² m conc.	81
3	$HS \qquad N \qquad HS \qquad N \qquad H$	Aluminium/ 1 M HCl	TAFEL, EIS, XPS, SEM & DFT	Mixed/ Langmuir	92% of <i>IE</i> calculated by EIS at 100 ppm concentration of inhibitor (HCS)	82
4		Aluminiu m/ NaCl	PDP, DFT & SEM	Mixed type/ Langmuir's ads. isotherm	PDP and SEM analysis towards inhibition efficiency of HF exhibits good correlation with DFT	83

Table 2 (continued)

	NH2 OSSO NH Sulfathiazole					
5		Aluminiu m/ NaCl	EIS, WL, PDP & quantum chemical analysis	Mixed type/ Langmuir's ads. isotherm	ATAT inhibitor molecules exhibits good inhibition efficiency towards metal corrosion	84
6		Aluminiu m/ NaCl	EIS, TAFEL, CCP & CCT	-	Inhibitor (ATAT) shows IE% of 86.1% at 5 mM conc.	85
7	H ₂ N-K diisopropyi thiourea	Aluminiu m/ NaCl	EIS, PDP, WL & DFT	Langmuir's ads. isotherm	% IE of 91% exhibited by DISOTU at optimum concentration	86
8	$ \begin{pmatrix} - H_{N}^{H} \\ - H_{N}^{H}$	Aluminum	DFT and MD simulation	-	DFT calculation shows the following increasing order (PBTA> TBTA> PBA> PAA) of effectiveness towards corrosion inhibition on the basis of binding energy	87

at higher concentration of studied inhibitors [100]. Electrochemical analysis proved the good inhibition property of 2,4,6-trimercapto-1,3,5-triazine inhibitors for copper metal [101]. It was found that 2.0 mM DAMP concentration of inhibitor is enough to exhibit > 90% (93.2%) inhibition efficiency [102]. EIS and PDP analysis showed the mixed type nature of cysteine in basic solution [103]. Dense and compact monolayer is responsible for corrosion inhibition on to copper surface [104]. The results of CV clearly showed the inhibitive nature of 3-mercapto-1H-1,2,4-triazole compounds [105]. In oxygenated 3% NaCl solutions, inhibitor showed better performance [106] (Table 3).

3.4 Organic Inhibitors as Metal Alloy Corrosion Inhibitor

Heteroatoms (O, P, N, S) containing organic molecules have extensively been studied for the metal alloys corrosion inhibitor. EIS revealed the 96% inhibition efficiency of ASPA molecules on metal alloys [107]. PTS molecules acted as a cathodic type inhibitor which is proved by EIS analysis [108]. EIS analysis revealed the mixed type nature of PDP molecules [109]. MAMT organic molecules revealed good % IE towards aluminium alloy [110]. Organic molecule (2-MBT) showed good inhibition property towards Al alloy in NaCl solution [111]. Cysteine exhibited higher inhibition efficiency (96%) towards alloy at 0.1 M concentration [112]. According to EIS analysis, cysteine molecules showed higher inhibition among the amino acids in 3.5% NaCl corrosive medium [113] (Table 4).

4 Future Consideration

Organic compounds containing heteroatoms have been studied extensively to prevent corrosion of mild steel, copper and their alloys, while the research to prevent the corrosion of metal-like aluminium, zinc, magnesium and their alloys is quite limited. Similarly, high corrosive media has not yet been used for corrosion studies. In the oil and gas industries that require a highly corrosive medium, compounds which Table 3Structures, nature ofadsorption and results outcomesof organic inhibitors for coppercorrosion in acidic media

s	Molecular structure	Metal/aggres	Methods	Nature of	Results of study	Ref.
N		sive media	FIC VDC	adsorption	Ctudied analysis assesses	00
1	SH benze nethiol	H ₂ SO ₄	EIS, XPS & contact angle	Mixed type	the good inhibition efficiency of inhibitors towards copper corrosion	88
	HS naphthalene-2-thiol					
	N-(4-sulfanylphenyl)acetamide					
2	K −s	Cu/ 7 M HNO3	PDP, EIS & SERS	Langmuir's ads. isotherm	EIS reveals that the inhibitors uniformly deposited on copper surface ($IE = 91.2\%$)	89
3	H2N-C-C-C-N N TBS	Cu/ 0.1 M NaCl	OCP, EIS, PDP & SEM	Mixed type Langmuir's ads. isotherm	Open circuit potential performed primarily for electrode/electrolyte interface analysis	90
4		Cu/ HCl	PDP, EIS & SEM	Langmuir's ads. isotherm	Analysis shows the good corrosion resistivity of ATMT towards corrosion on copper surface	91
5		Cu/ HNO3	WL, PDP, EIS, FTIR, SEM & XPS		MOTBI molecules exhibited % IE of 98.4% at 10mM concentration	92
6	Q	Cu/ 0.5 - 1.5	EIS, PDP	Mixed type	EIS, PDP & WL	93
		M H ₂ SO ₄	& WL	-	analysis measured the inhibition property of cys (amino acid)	
7	HS SH DMTO	Cu/ 0.5 M HCl	EIS, PDP, CV & FTIR	Langmuir's ads. isotherm	DMTD act as effective corrosion inhibitors towards copper at 7.5 mM concentration	94
8		Cu/ 7 M HNO3	EIS, PDP, XPS, AFM & EQCN	Cathodic type	PDP determine the cathodic type reaction of DOTBT on copper surface	95
9	HS- N-N-NH ₂ Jamino-1, 2, 4-rizzole 3-thiol	Cu/ 0.5 M HCl	EIS, PDP, WL & Raman spectrosco pv	Langmuir's ads. isotherm	Raman analysis shows the blanket sheet of ATT molecules adsorbed on to metal (copper) surface	96
10	O O MMPB	Cu/ 0.10 M HCl	EIS, WL, EDS & SEM	Mixed-type	MMPB exhibit inhibition efficiency of 92.7% and 96.6% respectively as temperature increases and extended time	97
11	H ₂ N ^{IIIIIII} L-cysteine	Cu / 0.5M H ₂ SO ₄	PDP, EIS & XPS	Mixed-type	EIS measurement shows that cysteine exhibits % <i>IE</i> of 95.00% (5 mM)	98
12	H ₂ N ^{NH2} hexane-1, 6-diamine HO _{SH} 2-mercapto-ethanol	Cu/ 0.5 M HCl	EDS, PDP EIS, SEM & FTIR	Langmuir's ads. Isotherm	EIS and PDP study shown that SAMs film on metal surface had 98.22% inhibition efficiency	99
13	HS- N 2-mercaptobenzimidazole	Cu	CV & XPS		Cyclic voltammetry reveals the efficient nature of inhibitor towards corrosion inhibition	100
14	S HS PCA	Cu/ 3 M NaCl	EIS, EDS, SEM & DFT	Langmuir's ads. isotherm	EIS studies reveals that 1 mmol/L of PCA shows 98.7% inhibition efficiency	101
1	1	1	1	1	1	1

Table 3 (continued)

15	SH N=N 1-phenyl-1 H-tetrazole-5-thiol SH N=N N=N N=N I-methyl-1 H-tetrazole-5-thiol	Cu/ 0.1 M NaCl	EIS, WL & FTIR	Mixed type	EID shows that % IE obtain between 50 to 90% range at higher concentration of studied inhibitors	102
16	HS N HS 1.35-Tizzins-2.4.6-Tiffiol	Cu/ 0.1 M NaCl	EIS, PDP, Contact angle, FTIR & DFT	Mixed type	Electrochemical analysis proves the good inhibition property of studied inhibitor for copper metal	103
17	H_2N H_2N H_2N H_2N DAMP	Cu/ 3.5 M NaCl	EIS, DFT, PDP, WL & SEM	Mixed/ Langmuir model	2.0 mM DAMP concentration of inhibitor is enough to exhibit > 90% (93.2%) inhibition efficiency	104
18	HO H ₂ N 2-amine-3-sulfanylpropanok acid	Cu/ 3.5 M NaCl	PDP SEM & EIS	Mixed	EIS and PDP analysis shows the mixed type nature of inhibitor in basic solution	105
19	H ₂ N-SH 4-aminobenzensthiol	Cu/ 3.5 M NaCl	EIS, CV, FTIR, SEM, EDS & Raman spectrosco py	Langmuir's ads. isotherm	Dense and compact monolayer is responsible for corrosion inhibition on to copper surface	106
20	HN N SH III-1,2.4-triazole-3-thiol	Cu/ NaCl	CV, AFM &SEM	Mixed/ Langmuirmo del	The results of CV clearly shows the inhibitive nature of inhibitor	107
21	H ₂ N S-ethy 1-1,3,4-triadiazol-2-amine	Cu/ 3 % NaCl	EIS, WL, SEM & EDS	Mixed type Langmuir's ads. isotherm	In oxygenated 3% NaCl solutions inhibitor shows its better performance	108

are cheap, less toxic and environment friendly should be studied. The synergistic effect of these asymmetries mixed with metal halides is still to be studied, which increases the efficiency of inhibitors to prevent corrosion.

5 Conclusion

This review discusses the corrosion inhibition property of compounds that contain heteroatoms, usually phosphorous, nitrogen, sulphur and oxygen atoms. Since all these atoms have lone pair of electrons in the p orbital, they share their electrons with the empty orbitals of the metal which causes effective bonding between organic molecules and metal and thus the metal surface is covered. Phosphorus has the lowest electronegativity in the known heteroatoms due to

which it can easily share its electron. The categories of effective inhibitors commonly include heterocyclic compounds, surfactants and natural products, many of which contain oxygen, nitrogen, phosphorus and sulphur atoms. Due to presence of heteroatoms, they are also used in corrosion inhibition of metal alloys. Many previous researches described that organic compounds containing P, O, N and S atoms have extensively been used as corrosion inhibitors for iron/steel. Many synthetic chemicals can also be used as corrosion inhibitors. In addition to the iron, heteroatoms containing organic compounds can be used for the corrosion protection of copper, aluminium, zinc and other metals too. In addition to hydrochloric acid corrosive medium, it can be studied in sulphuric acid, nitric acid, phosphoric acid and basic medium. Green synthesis of this type of heteroatom containing inhibitors should be emphasized further.

Table 4Structures, name,mode of adsorption and salientfeatures of inhibitors for thecorrosion of metal alloys incorrosive media.

S N	Molecular structure	Metal/aggres sive media	Methods	Nature of adsorption	Results of study	Ref.
1	HO H ₂ N	Cu-Ni alloys/NaCl	EIS, WL& PDP	Langmuir's ads. isotherm	EIS reveals the 96% inhibition efficiency of ASPA molecules on metal alloys	109
2		Bronze 3.0 NaCl	EIS, CV EDS & SEM	Mixed / Langmuir's ads. isotherm	PTS molecules act as a cathodic type inhibitor which is proved by EIS analysis	110
3	S N N N N N N N N N N N N N N N N N N N	Bronze/ NaCl	PDP, EIS, XPS and Inductive ly coupled plasma analysis (ICPA)	Mixed/ Langmuir's ads. isotherm	EIS analysis reveals the mixed type nature of PDP molecules	111
4		Al alloy/ 0.5 M caustic solution	PDP, ÉIS & SEM	Mixed type/ Langmuir's ads. isotherm	MAMT organic molecules reveal good % IE towards aluminium alloy	112
5	HS- N- I,2-benzothiazole-2-thiol	Al alloy/ 3.5 NaCl	PDP, EIS EDS & SEM	Mixed nature/ Langmuir's ads. isotherm	Organic molecules (2-MBT) shows good inhibition property towards Al alloy in NaCl solution	113
6	H2NIIII	Sn, Ca, Pb alloy/ 0.5 M H ₂ SO ₄	PDP, EIS, WL &SEM	Mixed-type/ Langmuir's Ads. isotherm	Cysteine exhibited higher inhibition efficiency (96%) towards alloy at 0.1 M concentration	114
7	H ₂ NIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Cu-10Al- 5Ni alloy / 3.5% NaCl	PDP, OCP, EIS & SEM	Langmuir's Ads. isotherm	According to EIS analysis Cysteine molecules shows higher inhibition among the amino acids in 3.5% NaCl corrosive medium	115
	HO NH ₂ methionine					

Compliance with Ethical Standards

Conflict of interest Author declared no conflict of interest.

References

- Yadav M, Sinha RR, Kumar S (2015) Corrosion inhibition effect of spiropyrimidinethiones on mild steel in 15% HCl solution: insight from electrochemical and quantum studies. RSC Adv 5:70832–70848
- Verma C, Quraishi MA, Singh A (2015) 2-Aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for mild steel in 1M HCl: electrochemical, thermodynamic, surface and quantum chemical investigation. J Taiwan Inst Chem Eng 49:229–239
- Roy P, Maji T, Dey S (2015) Adsorption behaviour of gluten hydrolysate on mild steel in 1M HCl and its role as a green corrosion inhibitor. RSC Adv 5:61170–61178

 Goyal M, Kumar S, Bahadur I, Verma C, Ebenso EE (2018) Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review. J Mol Liq 256:565–573

N-acetyl cysteine

- Verma C, Olasunkanmi L, Ebenso EE, Quraishi M (2018) Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: a review. J Mol Liq 251:100–118
- Verma DK, Khan F (2016a) Green approach to corrosion inhibition of mild steel in hydrochloric acid medium using extract of spirogyra algae. Green Chem Lett Rev 9(1):52–60
- Verma DK, Khan F (2016b) Corrosion inhibition of mild steel in hydrochloric acid using extract of glycine max leaves. Res Chem Intermed 42:3489–3506
- Verma DK, Khan F (2015) Corrosion inhibition of high carbon steel in phosphoric acid solution by extract of black tea. Adv. Res 5(4):1–9
- 9. Verma DK, Khan F (2016c) Corrosion inhibition of mild steel by using sulpha drugs in phosphoric acid medium: a combined experimental and theoretical approach. Am Chem Sci J 14(3):1–8

- Verma DK, Khan F, Verma CB, Susai R, Quraishi MA (2017) Experimental and theoretical studies on mild steel corrosion inhibition by the grieseofulvin in 1M HCl. Eur Chem Bull 6(1):21–30
- Verma DK, Ebenso EE, Quraishi MA, Verma C (2019) Gravimetric, electrochemical surface and density functional theory study of acetohydroxamic and benzohydroxamic acids as corrosion inhibitors for copper in 1M HCl. Results Phys 13:102194
- Zhang J, Qiao G, Hu S, Yan Y, Ren Z, Yu L (2011) Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros Sci 53:147–152
- Musa AY, Jalgham RT, Mohamad AB (2012) Molecular dynamic and quantumchemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl. Corros Sci 56:176–183
- Deng S, Li X, Xie X (2014) Hydroxymethyl urea and 1, 3-bis (hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corros Sci 80:276–289
- Obot I, Gasem Z (2014) Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros Sci 83:359–366
- Verma C, Quraishi MA (2016) Thermodynamic, electrochemical and surface studies of dendrimers as effective corrosion inhibitors for mild steel in 1 M HCl. Anal Bioanal Electrochem 8(1):104–123
- Bourichi S, Rodi YK, El Azzouzi M, Kharbach Y, Chahdi FO, Aouniti A (2017) Inhibitive effect of new synthetized imidazopyridine derivatives for the mild steel corrosion in Hydrochloric acid medium. J Mater Environ Sci 8(5):1696–1707
- Ferreira ES, Giacomelli C, Giacomelli FC, Spinelli A (2004) Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Mater Chem Phys 83(1):129–134
- Sekine I, Nakahata Y, Tanabe H (1988) The corrosion inhibition of mild steel by ascorbic and folic acids. Corros Sci 28(10):987–1001
- 20. Verma C, Olasunkanmi LO, Obot I, Ebenso EE, Quraishi M (2016a) 2, 4-Diamino-5- (phenylthio)-5 H-chromeno [2, 3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies. RSC Adv 6:53933–53948
- Verma C, Olasunkanmi L, Obot I, Ebenso EE, Quraishi M (2016b) 5-Arylpyrimido-[4, 5-b]quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach. RSC Adv 6:15639–15654
- 22. Zhang Z, Tian N, Huang X, Shang W, Wu L (2016) Synergistic inhibition of carbon steel corrosion in 0.5 M HCl solution by indigo carmine and some cationic organic compounds: experimental and theoretical studies. RSC Adv 6:22250–22268
- Khaled K (2010a) Corrosion control of copper in nitric acid solutions using some amino acids–a combined experimental and theoretical study. Corros Sci 52:3225–3234
- Qin TT, Li J, Luo HQ, Li M, Li NB (2011a) Corrosion inhibition of copper by 2, 5- dimercapto-1, 3, 4-thiadiazole monolayer in acidic solution. Corros Sci 53:1072–1078
- Zeng J, Zhang J, Gong X (2011) Molecular dynamics simulation of interaction between benzotriazoles and cuprous oxide crystal. Comput Theor Chem 963:110–114
- Qiang Y, Zhang S, Xu S, Li W (2016) Experimental and theoretical studies on the corrosion inhibition of copper by two indazole derivatives in 3.0% NaCl solution. J Colloid Interface Sci 472:52–59
- Raja PB, Qureshi AK, Rahim AA, Osman H, Awang K (2013) Neolamarckia cadamba alkaloids as eco-friendly corrosion inhibitors for mild steel in 1 M HCl media. Corros Sci 69:292–301

- Soltani N, Behpour M, Oguzie EE, Mahluji M, Ghasemzadeh MA (2015) Pyrimidine-2-thione derivatives as corrosion inhibitors for mild steel in acidic environments. RSC Adv 5:11145
- Verma CB, Quraishi MA, Singh A (2016) A thermodynamical, electrochemical, theoretical and surface investigation of diheteroaryl thioethers as effective corrosion inhibitors for mild steel in 1 M HCl. J Taiwan Inst Chem Eng 58:127–140
- Yadav M, Gope L, Kumari N, Yadav P (2016) Corrosion inhibition performance of pyranopyrazole derivatives for mild steel in HCl solution: gravimetric, electrochemical and DFT studies. J Mol Liq 216:78–86
- 31. El Azzouzi M, Aouniti A, Tighadouin S, Elmsellem H, Radi S, Hammouti B, El Assyry A, Bentiss F, Zarrouk A (2016) Some hydrazine derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: weight loss, electrochemichal, SEM and theoretical studies. J Mol Liq 221:633–641
- 32 Malekmohammadi Nouri P, Attar MM (2015) Experimental and quantum chemical studies on corrosion inhibition performance of fluconazole in hydrochloric acid solution. Bull Mater Sci 38(2):499–509
- Shukla SK, Quraishi MA (2009) Ceftriaxone: a novel corrosion inhibitor for mild steel in hydrochloric acid. J Appl Electrochem 39:1517–1523. https://doi.org/10.1007/s10800-009-9834-1
- Singh AK, Khan S, Singh A, Quraishi SM, Quraishi MA, Ebenso EE (2013) Inhibitive effect of chloroquine towards corrosion of mild steel in hydrochloric acid solution. Res Chem Intermed 39:1191–1208. https://doi.org/10.1007/s11164-012-0677-8
- Gobara M, Baraka A, Zaghloul B (2015) Inhibition of mild steel corrosion in sulfuric acid solution using collagen. Res Chem Intermed. https://doi.org/10.1007/s11164-014-1809-0
- 36. Verma CB, Quraishi MA, Ebenso EE (2013) Green ultrasound assisted synthesis of N2, N4, N6-tris ((Pyridin-2-ylamino) methyl)-1, 3, 5-triazine-2,4,6-triamine as effective corrosion inhibitor for mild steel in 1 M hydrochloric acid medium. Int J Electrochem Sci 8:10864–10877
- Jia-jun F, Su-ning L, Ying W, Xiao-dong L, Lu-de L (2011) Computational and electrochemical studies on the inhibition of corrosion of mild steel by L-Cysteine and its derivatives. J Mater Sci 46:3550–3559. https://doi.org/10.1007/s10853-011-5267-4
- Muthukrishnan P, Jeyaprabha B, Tharmaraj P, Prakash P (2015) Inhibition of the corrosion of mild steel in acidic media by use of a new antipyridine derivative. Res Chem Intermed. https://doi. org/10.1007/s11164-014-1714-6
- Ousslim A, Bekkouch K, Hammouti B, Elidrissi A, Aouniti A (2009) Piperazine derivatives as inhibitors of the corrosion of mild steel in 3.9 M HCl. J Appl Electrochem 39:1075–1079. https://doi.org/10.1007/s10800-008-9759-0
- 40 Awad MI (2006) Eco friendly corrosion inhibitors: inhibitive action of quinine for corrosion of low carbon steel in 1 M HCl. J Appl Electrochem 36:1163–1168. https://doi.org/10.1007/s10800-006-9204-1
- Rajeswari V, Kesavan D, Gopiraman M, Viswanathamurthi P (2013) Inhibition of cast iron corrosion in acid, base, and neutral media using Schiff Base derivatives. J Surfactants Deterg 16(4):571–580
- Seung-Hyun Y, Young-Wun K, Keunwoo C, Nam-Kyun K, Joon-Seop K (2013) Corrosion inhibition properties of triazine derivatives containing carboxylic acid and amine groups in 1.0 M HCl solution. Ind Eng Chem Res. https://doi.org/10.1021/ie303092j
- Yadav M, Sarkar TK, Obot IB (2016) Carbohydrate compounds as green corrosion inhibitor: Electrochemical, XPS, DFT and molecular dynamics simulation studies. RSC Adv. https://doi. org/10.1039/C6RA24026G
- 44. Yadav M, Kumar S, Sinha RR, Behera D (2013) Experimental and quantum chemical studies on corrosion inhibition performance of benzimidazole derivatives for mild steel in HCl. Ind Eng Chem Res. https://doi.org/10.1021/ie400099q

- 45. Aslam R, Mobin M, Zehra S, Obot IB, Ebenso EE (2017) N, N'-dialkylcystine gemini and monomeric N-alkyl cysteine surfactants as corrosion inhibitors on mild steel corrosion in 1 M HCl solution: a comparative study. ACS Omega 2:5691–5707. https://doi.org/10.1021/acsomega.7b00501
- Kumar SLA, Gopiraman M, Kumar MS, Sreekanth A (2011) 2-acetylpyridine-N(4)-morpholine thiosemicarbazone (HAcp-MTSc) as a corrosion inhibitor on mild steel in HCl. Ind Eng Chem Res 50:7824–7832. https://doi.org/10.1021/ie200487g
- Tawfik SM (2015) Alginate surfactant derivatives as ecofriendly corrosion inhibitor for carbon steel in acidic environment. RSC Adv. https://doi.org/10.1039/C5RA20340F
- 48. Hmamou DB, Salghi R, Zarrouk A, Aouad MR, Benali O, Zarrok H, Messali M, Hammouti B, Kabanda MM, Bouachrine M, Ebenso EE, Kabanda MM, Bouachrine M (2013) Weight loss, electrochemical, quantum chemical calculations and molecular dynamics simulation studies on 2-(benzylthio)-1,4,5-triphenyl-1Himidazole as inhibitor for carbon steel corrosion in hydrochloric acid. Ind Eng Chem Res. https://doi.org/10.1021/ie401034h
- Oguzie EE, Li Y, Wang SG, Wang F (2011) Understanding corrosion inhibition mechanisms—experimental and theoretical approach. RSC Adv 1:866–873
- Yadav M, Sinha RR, Kumar S, Sarkar TK (2015) Corrosion inhibition effect of spiropyrimidinethiones on mild steel in 15% HCl solution: insight from electrochemical and quantum studies. RSC Adv 5:70832–70848
- Okafor PC, Liu CB, Zhu YJ, Zheng YG (2011) Corrosion and corrosion inhibition behavior of N80 and P110 carbon steels in CO2-saturated simulated formation water by Rosin Amide imidazoline. Ind Eng Chem Res 50:7273–7281. https://doi. org/10.1021/ie1024112
- Quraishi MA, Sardar R (2002) Corrosion inhibition of mild steel in acid solutions by some aromatic oxadiazoles. Mater Chem Phys 78:425–431
- Khaled KF, Abdel-Shafi NS (2014) Corrosion inhibition of mild steel by some sulfur containing compounds: artificial neural network modelling. J Mater Environ Sci 5(4):1288–1297
- 54 He C, Tian Z, Zhang B, Lin Y, Chen X, Wang M, Li F (2014) Inhibition effect of environment-friendly inhibitors on the corrosion of carbon steel in recirculating cooling water. Ind Eng Chem Res. https://doi.org/10.1021/ie504616z
- 55. Ahamad I, Quraishi MA (2009) Bis (benzimidazol-2-yl) disulphide: an efficient water soluble inhibitor for corrosion of mild steel in acid media. Corros Sci 51:2006–2013
- 56. Quraishi MA, Gupta NK, Verma C, Mukherjee AK (2016) Green Schiff's bases as corrosion inhibitors for mild steel in 1 M HCl solution: experimental and theoretical approach. RSC Adv. https://doi.org/10.1039/C6RA22116E
- 57. Ansari KR, Quraishi MA, Singh A (2017) Chromenopyridin derivatives as environmentally benign corrosion inhibitors for N80 steel in 15% HCl. J Assoc Arab Univ Basic Appl Sci 22:45–54
- Eddy NO, Ebenso EE (2010a) Adsorption and quantum chemical studies on cloxacillin and halides for the corrosion of mild steel in acidic medium. Int J Electrochem Sci 5:731–750
- Azzam EMS, Abd El-Aal AA (2013) Corrosion inhibition efficiency of synthesized poly 12-(3-amino phenoxy) dodecane-1-thiol surfactant assembled on silver nanoparticles. Egypt J Petrol. https://doi.org/10.1016/j.ejpe.2013.06.008
- Li X, Deng S, Lin T, Xie X, Du G (2017) 2-Mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO3 solution. Case Stud Fire Safety. https://doi. org/10.1016/j.corsci.2017.02.011
- 61 Wang L (2001) Evalution of 2-Mercaptobenzamidazole as corrosion inhibition for mild steel in phosphoric acid. Corros Sci 43:2281–2289

- 62. Saha SK, Ghosh P, Hens A, Murmu NC, Banerjee PB (2015) Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Phys E 66:332–341
- Eddy NO, Ebenso EE (2010b) Quantum chemical studies on the inhibition potentials of some Penicillin compounds for the corrosion of mild steel in 0.1 M HCl. J Mol Model 16:1291– 1306. https://doi.org/10.1007/s00894-009-0635-6
- Fouda AS, Ellithy AS (2009) Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HCl solution. Corros Sci 51:868–875
- 65. Gopiraman M, Selvakumaran N, Kesavan D, Kim IS, Karvembu R (2012) Chemical and physical interactions of 1-benzoyl-3,3-disubstituted thiourea derivatives on mild steel surface: corrosion inhibition in acidic media. Ind Eng Chem Res 51:7910–7922. https://doi.org/10.1021/ie300048t
- 66. Arslan T, Kandemirli F, Ebenso EE, Love I, Alemu H (2009) Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros Sci 51:35–47
- Özcan M, Dehri İL (2004) Electrochemical and quantum chemical studies of some sulphur-containing organic compounds as inhibitors for the acid corrosion of mild steel. Prog Org Coat 51:181–187
- Doner A, Solmaz R, Ozcan M, Kardas G (2011) Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corros Sci 53:2902–2913
- Jafari H, Sayin K (2016) Sulfur containing compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Trans Indian Inst Met. https://doi.org/10.1007/s1266 6-015-0556-2
- Azzam EMS, Hegazy MA, Kandil NG, Badawi AM, Sami RM (2015) The performance of hydrophobic and hydrophilic moieties in synthesized thiol cationic surfactants on corrosion inhibition of carbon steel in HCl. Egypt J Pet 24:493–503
- 71 Bouklah M, Hammoutia B, Aouniti A, Benhadda T (2004) Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5M H₂SO₄. Prog Org Coat 49:225–228
- Ebenso EE, Isabirye DA, Eddy NO (2010) Adsorption and quantum chemical studies on the inhibition potentials of some thiosemicarbazides for the corrosion of mild steel in acidic medium. Int J Mol Sci 11:2473–2498. https://doi.org/10.3390/ijms110624 73
- 73. Torres VV, Rayol VA, Magalhães M, Viana GM, Aguiar LCS, Machado SP, Orofino H, D'Elia E (2014) Study of thioureas derivatives synthesized from a green route as corrosion inhibitors for mild steel in HCl solution. Corros Sci 79:108–118
- Amar H, Braisaz T, Villemin D, Moreau B (2008) Thiomorpholin-4-ylmethyl-phosphonic acid and morpholin-4-methyl-phosphonic acid as corrosion inhibitors for carbon steel in natural seawater. Mater Chem Phys 110:1–6
- Okafor PC, Liu X, Zheng YG (2009) Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO₂-saturated solution. Corros Sci 51:761–768
- Şahin M, Bilgic S, Yılmaz H (2002) The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums. Appl Surf Sci 195:1–7
- 77 Amin MA, Khaled KF, Mohsen Q, Arida HA (2010) A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros Sci 52:1684–1695
- Weder N, Alberto RA, Koitz R (2016) Thiourea derivatives as potent inhibitors of aluminum corrosion: atomic-level insight into adsorption and inhibition mechanisms. J Phys Chem C. https ://doi.org/10.1021/acs.jpcc.5b11750

- Khaled KF (2010b) Electrochemical investigation and modeling of corrosion inhibition of aluminium in molar nitric acid using some sulphur-containing amines. Corros Sci 52:2905–2916
- Tamilarasan R, Sreekanth A (2013) Spectroscopic and DFT investigations on the corrosion inhibition behavior of tris(5methyl-2-thioxo-1,3,4- thiadiazole)borate on high carbon steel and aluminium in HCl media. RSC Adv 3:23681–23691
- 81 Zor S, Sağdinç S (2014) Experimental and theoretical study of sulfathiazole as environmentally friendly inhibitor on aluminium corrosion in NaCl Prot Metals. Phys Chem Surf 50(2):244–253
- Sherif E-SM (2012) Effects of 3-amino-1,2,4-triazole-5-thiol on the inhibition of pure aluminum corrosion in aerated stagnant 3.5 wt% NaCl solution as a corrosion inhibitor. Int J Electrochem Sci 7(6):4847–4859
- Sherif E-SM (2013) Electrochemical investigations on the corrosion inhibition of aluminum by 3-amino-1,2,4-triazole-5-thiol in naturally aerated stagnant seawater. J Ind Eng Chem 19(6):1884–1889
- Lakshmi NV, Arivazhagan N et al (2013) The corrosion inhibition of aluminium in 3.5% NaCl by diisopropyl thiourea. Int J Chem Tech Res 5(4):1959–1963
- Kaya S, Banerjee P, Saha SK, Tüzün B, Kaya C (2016) Theoretical evaluation of some benzotriazole and phospono derivatives as aluminum corrosion inhibitors: DFT and molecular dynamics, simulations approaches. RSC Adv. https://doi.org/10.1039/ C6RA14548E
- Tan Y, Srinivasan M, Pehkonen S, Chooi SY (2006) Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper. Corros Sci 48:840–862
- Ying-Cheng P, Ying W, Lu-Yuan X, Xiao-Yu G, Hai-Feng Y (2012) Adsorption behavior of methimazole monolayers on a copper surface and its corrosion inhibition. J Phys Chem C 116:3532–3538. https://doi.org/10.1021/jp2090318
- Zor S (2014) Sulfathiazole as potential corrosion inhibitor for copper in 0.1 M NaCl. Prot Metals Phys Chem Surf 50:530–537
- Appa Rao BV, Iqbal MY, Kumar KC, Reddy MN (2014) Corrosion protection of copper by self-assembled nano film of 4-amino-3-(octadecylthio)-6-methyl-1,2,4-triazinone. Indian J Chem Technol 21:188–198
- Appa Rao BV, Iqbal MY, Sreedhar B (2010) Electrochemical and surface analytical studies of the self-assembled monolayer of 5-methoxy-2-(octadecylthio)benzimidazole in corrosion protection of copper. Electrochim Acta 55:620–631
- Kuruvilla M, John S, Joseph A (2013) Electrochemical studies on the interaction of l-cysteine with metallic copper in sulfuric acid. Res Chem Intermed 39:3531–3543
- Qin TT, Li J, Luo HQ, Li M, Li NB (2011b) Corrosion inhibition of copper by 2, 5 dimercapto-1, 3, 4-thiadiazole monolayer in acidic solution. Corros Sci 53:1072–1078
- Rao BA, Iqbal MY, Reddy MN, Kumar KC (2014) Self-assembled nanofilm of 1, 2-dihydro-3-(octadecylthio) benzotriazine on copper for corrosion protection. Bull Mater Sci 37:185–197
- Sherif E-SM, Erasmus R, Comins J (2007) Corrosion of copper in aerated acidic pickling solutions and its inhibition by 3-amino-1, 2, 4-triazole-5-thiol. J Colloid Interface Sci 306:96–104
- Tansug G, Tuken T, Giray ES, Fındıkkıran G, Sıgırcık G, Demirkol O, Erbil M (2014) A new corrosion inhibitor for copper protection. Corros Sci 84:21–29
- Mohamed S (2011) El-Deab, Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study. Mater Chem Phys 129:223–227
- 97. Tüken T, Kıcır N, Elalan NT, Sığırcık G, Erbil M (2012) Self assembled film based on hexane-1, 6-diamine and 2-mercaptoethanol on copper. Appl Surf Sci 258:6793–6799

- Xue G, Huang X-Y, Dong J, Zhang J (1991) The formation of an effective anti-corrosion film on copper surfaces from 2-mercaptobenzimidazole solution. J Electroanal Chem Interfacial Electrochem 310:139–148
- 99. Zhang XH, Liao QQ, Nie KB, Zhao LL, Yang D, Yue ZW, Ge HH, Li YJ (2015) Self-assembled monolayers formed by ammonium pyrrolidine dithiocarbamate on copper surfaces in sodium chloride solution. Corros Sci 93:201–210
- Zucchi F, Trabanelli G, Fonsati M (1996) Tetrazole derivatives as corrosion inhibitors for copper in chloride solutions. Corros Sci 38:2019–2029
- Chen W, Hong S, Luo HQ, Li NB (2014) Inhibition effect of 2,4,6-trimercapto-1,3,5-triazine self-assembled monolayers on copper corrosion in NaCl solution. J Mater Eng Perform 23:527–537
- 102. Cheng Z, Mo S, Jia J, Feng J, Luo HQ, Li NB (2016) Experimental and theoretical studies of 4,6-diamino-2-mercaptopyrimidine as a copper inhibitor in 3.5 wt% NaCl solution. RSC Adv 6:15210–15219
- 103. Kilinççeker G, Demir H (2013) The inhibition effects of cysteine on the corrosion behaviour of copper in 3.5% NaCl solution. Anti-Corros Methods Mater 60:134–142
- 104. Rajkumar G, Sagunthala R, Sethuraman MG (2015) Investigation of inhibiting properties of self-assembled films of 4-aminothiophenol on copper in 3.5% NaCl. J Adhes Sci Technol 29:1107–1117
- 105. Rajkumar G, Sethuraman MG (2016) A study of copper corrosion inhibition by self-assembled films of 3-mercapto-1H-1,2,4triazole. Res Chem Intermed 42:1809–1821
- Sherif E, Park S-M (2006) 2-Amino-5-ethyl-1, 3, 4-thiadiazole as a corrosion inhibitor for copper in 3.0% NaCl solutions. Corros Sci 48:4065–4079
- 107. Badawy WA, Ismail KM, Fathi AM (2006) Corrosion control of Cu–Ni alloys in neutral chloride solutions by amino acids. Electrochim Acta 51:4182–4189
- Dermaja A, Hajjaji N, Joiret S, Rahmounia K, Srhiri A, Takenouti H, Vivier V (2007) Electrochim Acta 52:4654–4662
- 109. Ramjia K, Cairns DR, Rajeswari S (2008) Appl Surf Sci 254:4483–4493
- Kumari PDR, Nayak J et al (2011) 3-ethyl-4-amino-5-mercapto-1,2,4-triazole as corrosion inhibitor for 6061-alloy in sodium hydroxide solution. Portugaliae Electrochim Acta 29(6):445–462
- 111. Balaskas AC, Curioni M et al (2015) Effectiveness of 2-mercaptobenzothiazole, 8-hydroxyquinoline and benzotriazole as corrosion inhibitors on AA 2024–T3 assessed by electrochemical methods. Surf Interface Anal 47(11):1029–1039
- 112. Kiani MA, Mousavi MF, Ghasemi S, Shamsipur M, Kazemi SH (2008) Inhibitory effect of some amino acids on corrosion of Pb– Ca–Sn alloy in sulfuric acid solution. Corros Sci 50:1035–1045
- 113 Abd El-Hafez GM, Badawy WA (2013) The use of cysteine, N-acetyl cysteine and methionine asenvironmentally friendly corrosion inhibitors for Cu-10Al-5Ni alloyin neutral chloride solution. Electrochim Acta 108:860–866
- 114. Srivastava V, Haque J, Verma C, Singh P, Lgaz H, Salghi R, Quraishi MA (2017) Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: experimental, DFT and MD studies. J Mol Liq 244:340–352

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

UGC-CARE GROUP I LISTED वर्ष 13 अंक 2 मार्च-अप्रैल 2021

India's Leading Refereed Hindi Language Journal

IMPACT FACTOR : 5.051

OUR PUBLICATIONS

🍪 lobus Press

448, Pocket-V, Mayur Vihar, Phase-I, Delhi-110091 (INDIA) Ph.: 011-22753916

ISSN 0975-119X

प्रधान संपादक **डॉ. अश्विवनी महाजन** दिल्ली विश्वविद्यालय, दिल्ली

संपादक

प्रो. प्रसून दत्त सिंह महात्मा गांधी केन्द्रीय विश्वविद्यालय, मोतिहारी

डॉ. फूल चन्द दिल्ली विश्वविद्यालय, दिल्ली

वर्ष: 13 अंक: 2 🗆 मार्च-अप्रैल, 2021 दृष्टिकोण

संपादकीय सम्पर्कः

448, पॉकेट-5, मयूर विहार, फेज-I, दिल्ली-110091 फोन : 011-22753916, 40564514, 35522994 Mobile: 9710050610, 9810050610 e-mail : editorialindia@yahoo.com; editorialindia@gmail.com; delhijournals@gmail.com Website : www.ugc-care-drishtikon.com ©Editorial India Editorial India is a content development unit of Permanence Education Services (P) Ltd.

ISSN 0975-119X

नोट: पत्रिका में प्रकाशित लेखकों के विचार अपने हैं। उसके लिए पत्रिका/संपादक/संपादक मंडल को उत्तरदायी नहीं ठहराया जा सकता। पत्रिका से सम्बंधित किसी भी विवाद के निपटारे के लिए न्याय क्षेत्र दिल्ली होगा।

आज कोरोना वायरस, जिसे चीनी या वुहान वायरस भी कहा जा रहा है, ने लगभग पूरी मानवता को अपनी चपेट में ले लिया है। इस महामारी के कारण मरने वालों की भारी संख्या के कारण इस वायरस से संक्रमित लोगों में ही नहीं, जो लोग संक्रमित नहीं है, उनमें भी खतरा बढ़ता जा रहा है। स्वास्थ्य सुविध ाएं, महामारी के सामने बौनी पड़ती दिखाई दे रही है। ऐसे में अस्पतालों में बेड, आईसीयू, वेंटीलेटर का तो अभाव है ही, सामान्य स्वास्थ्य उपकरणों जैसे ऑक्सीजन, दवाइयों, स्वास्थ्य कर्मियों आदि की भी भारी किल्लत का सामना करना पड़ रहा है। हालांकि सरकार ने बेड, दवाइयों, ऑक्सीजन की उपलब्ध ता सुनिश्चित करने हेतु प्रयास किए हैं, लेकिन वर्तमान त्रासदी के समक्ष वे प्रयास बहुत कम है। कम ज्यादा मात्रा में इसी प्रकार की स्थिति का सामना अमेरिका, इंग्लैंड, इटली, ब्राजील जैसे देश पहले से ही कर चुके हैं या कर रहें हैं।

भारत में भी इस प्रकार की त्रासदी में लोगों की मजबूरी का लाभ उठाकर मुनाफा कमाने वाले लोगों की कमी नहीं है। हम सुनते हैं कि दवाइयों, ऑक्सीजन, ऑक्सीमीटर आदि के विक्रेता ही नहीं, बल्कि अस्पताल भी मुनाफा कमाने की इस होड़ में शामिल हो चुके हैं। जनता के संकट, इस मुनाफाखोरी के कारण कई गुना बढ़ चुके हैं। इन संकटों से समाधान का एक ही रास्ता है कि जल्द से जल्द इन स्वास्थ्य सुविधाओं को पुख्ता किया जाए और इलाज हेतु साजो-सामान और दवायों को पर्याप्त मात्रा में उपलब्ध कराया जाए।

जहां तक दवाइयों की कमी, उनकी ऊंची कीमतों और उससे ज्यादा मुनाफाखोरी का सवाल है, उसके पीछे देश के व्यापारियों की जमाखोरी से कहीं ज्यादा वैश्विक बहुराष्ट्रीय कंपनियों का एकाधिकार है। पेटेंट और अन्य बौद्धिक संपदा अधिकारों के कानूनों के कारण दवाइयों और यहां तक कि स्वास्थ्य उपकरणों आदि में भी इन कंपनियों का एकाधिकार स्थापित है। इन कानूनों के चलते इन दवाइयों और उपकरणों का उत्पादन कुछ हाथों में ही केंद्रित रहता है, जिससे इनकी ऊंची कीमतें यह कंपनियां वसूलती है। हाल ही में हमने देखा कि रमदेसिविर नाम के टीके की कीमत 3000 रुपए से 5400 रुपए थी जिसे भारत सरकार ने नियंत्रित तो किया, लेकिन उसके साथ ही उसकी भारी कमी भी हो गई। इसके चलते इन इंजेक्शनों की कालाबाजारी हो रही है और मरीजों से इंजेक्शन के लिए 20 हजार से 50 हजार रू. की कीमत वसूली जा रही है। यही हालत अन्य दवाइयों की है, जिसकी भारी कमी और कालाबाजारी चल रही है।

ऐसा नहीं है कि भारतीय कंपनियां इन दवाइयों को बनाने में असमर्थ है, लेकिन चूँकि वैश्विक कंपनियों के पास इन दवाइयों का पेटेंट है, वे अपनी मर्जी से अन्य कंपनियों (भारतीय या विदेशी) को लाइसेंस लेकर इन दवाइयों का उत्पादन करवाती है और इस कारण इन दवाइयों की भारी कीमत वसूली जाती है।

क्या है समाधान?

यह सही है कि इन दवाइयों के पेटेंट इन कंपनियों के पास है लेकिन फिर भी भारत सरकार वर्तमान महामारी से निपटने हेतु प्रयास कर न केवल इन दवाइयों के उत्पादन को बढ़ा सकती है, बल्कि कीमतों में भी भारी कमी कर लोगों को राहत दे सकती है। गौरतलब है कि पेटेंट से जुड़ी इस प्रकार की समस्या डब्ल्यूटीओ बनने से पहले नहीं थी। देश में सरकार किसी भी दवाई के उत्पादन हेतु लाइसेंस जारी कर उसके उत्पादन को सुनिश्चित कर सकती थी। इस कारण भारत का दवा उद्योग न केवल भारत में बल्कि विश्व भर में सस्ती दवाइयां उपलब्ध करा रहा था। 1995 में विश्व व्यापार संगठन के बनने के साथ ही ट्रिप्स (व्यापार सम्बन्धी बौद्धिक सम्पदा अधिकार) समझौता लागू हो गया था। इस समझौते में सदस्य देशों पर यह शर्त लगाई गई थी कि वह पेटेंट समेत अपने सभी बौद्धिक संपदा कानूनों को बदलेंगे और उन्हें सख्त बनाएंगे (यानी पेटेंट धारकों कंपनियों के पक्ष में बनाएंगे)। इस समझौते से पहले भी इसका भारी विरोध हुआ था, क्योंकि यह तय था कि इस समझौते के बाद दवाइयां महंगी होगी और जन स्वास्थ्य पर खतरे में पड जाएगा।

ऐसे में जागरूक जन संगठनों और दलगत राजनीति से ऊपर उठकर राजनेताओं के प्रयासों से विशव व्यापार संगठन और अमीर मुल्कों के दबाव को दरकिनार करते हुए भारत ने पेटेंट कानूनों में संशोधन करते हुए जन स्वास्थ्य से जुड़ी चिंताओं का काफी हद तक निराकरण कर लिया था। हालांकि प्रक्रिया पेटेंट के स्थान पर उत्पाद पेटेंट लागू किया गया और पेटेंट की अवधि भी 14 वर्ष से बढ़ाकर 20 वर्ष कर दी गई थी, लेकिन उसके बावजूद जेनेरिक दवाइयों के उत्पादन की छूट पुन:पेटेंट की मनाही, अनिवार्य पेटेंट का प्रावधान, अनुमति पूर्व विरोध आदि कुछ ऐसे प्रावधान भारतीय पेटेंट कानून में रखे गए थे, जिससे काफी हद तक जन स्वास्थ्य संबंधी मुद्दों का समाधान हो सका। लेकिन इन सबके बावजूद अमेरिका समेत अन्य देशों की सरकारों ने भारत पर यह दबाव बनाए रखा कि भारत अपने पेटेंट कानूनों में ढील दे और अपने पास उपलब्ध प्रावधानों का न्यूनतम उपयोग करे।

अनिवार्य लाइसेंस

संशोधित भारतीय पेटेंट अधिनियम (1970) के अध्याय 16 और ट्रिप्स प्रावधानों के अनुसार अनिवार्य लाइसेंस दिए जाने का प्रावधान है। अनिवार्य लाइसेंस से अभिप्राय है सरकार द्वारा जारी लाइसेंस यानी अनुमति जिसके अनुसार किसी उत्पादक को भी पेटेंट धारक की अनुमति के बिना पेटेंट उत्पादन को बनाने, उपयोग करने और बेचने का अधिकार दिया जाता है। इसका मतलब यह है कि वर्तमान में कोविड-19 से संक्रमित व्यक्तियों के लिए उपयोग की जाने वाली

दुष्टिकोण

दवाइयों यानी रमदेसिविर और अन्य दवाओं के संदर्भ में यदि सरकार अनिवार्य लाइसेंस जारी कर दे तो भारत का कोई भी फार्मा निर्माता सरकार द्वारा निध रित राशि (जो अत्यंत कम होती है) पेटेंट धारक को देकर उन दवाइयों का उत्पादन देश में करके। उनको इस्तेमाल और बेच सकता है।

विशेषज्ञों का मानना है कि पेटेंट कानून की धारायें 92 और 100 वैक्सीन हेतु अनिवार्य लाइसेंस जारी करने के लिए उपयुक्त है। सरकार स्वेच्छा (सूओमोटो) से 'राष्ट्रीय आपदा' अथवा 'अत्यधिक तात्कालिकता' के मद्देनजर गैर व्यवसायिक सरकारी उपयोग के लिए इन धाराओं का उपयोग करते हुए अनिवार्य लाइसेंस जारी कर सकती है।

गौरतलब है कि ये कंपनियां महामारी के बढ़ते प्रकोप से मुनाफा कमाने की फिराक में है और अमेरिका सरीखे देशों की सरकारें इन दवाओं और वैक्सीन की जमाखोरी के माध्यम से विकासशील और गरीब देशों के शोषण की तैयारी कर रही है। हाल ही में भारत में वैक्सीन उत्पादन हेतु आवश्यक कच्चे माल की आपूर्ति में अमेरिका सरकार ने अड़ंगा लगाया था और अपने पास जमा की वैक्सीन को भारत समेत दूसरे देशों को भेजने पर रोक लगा दी थी। बाद में अंतरराष्ट्रीय और घरेलू दबाव के कारण उन्हें यह रोक हटानी पड़ी।गिलिर्ड कंपनी द्वारा रमदेसिविर टीके की भारी जमाखोरी के समाचार भी आ रहे हैं। ऐसे में भारत में इन दवाओं और वैक्सीन उत्पादन हेतु अनिवार्य लाइसेंस लागू करना अत्यंत आवश्यक हो गया है।

हालांकि भारत सरकार ने दक्षिणी अफ्रीका के साथ मिलकर विश्व व्यापार संगठन में भी ट्रिप्स प्रावधानों में छूट हेतु गुहार लगाई है, लेकिन अमेरिका, यूरोप और जापान जैसे देशों ने उसमें भी अड़ांगा लगा दिया है। ऐसे में सरकार को अपने सार्वभौम अधिकारों का उपयोग करते हुए ये अनिवार्य लाइसेंस तुरंत देने चाहिए, ताकि महामारी से त्रस्त जनता को कंपनियों के शोषण से बचाया जा सके। गौरतलब है कि विश्व व्यापार संगठन के दोहा मंत्रिस्तरीय सम्मेलन में बौद्धिक सम्पदा (ट्रिप्स) एवं जन स्वास्थ्य से संबंधित एक राजनीतिक घोषणा स्वीकृत की गयी जिसमें सरकारों के इस सार्वभौम अधिकार को मान्य किया गया कि किसी भी आपातकाल अथवा अत्यधिक तत्कालिकता की स्थिति में सदस्य देशों को अधिकार है कि वह ट्रिप्स के प्रदत्त बौद्धिक संपदा अधिकारों को दरकिनार करते हुए जन स्वास्थ्य की रक्षा कर सकें। इस घोषणा द्वारा सदस्य देशों को अधिकार है कि वह ट्रिप्स के प्रदत्त बौद्धिक संपदा अधिकारों को दरकिनार करते हुए जन स्वास्थ्य की रक्षा कर सकें। इस घोषणा द्वारा सदस्य देशों को "राष्ट्रीय आपातकाल या अत्यधिक तात्कालिकता की अन्य परिस्थितियों का निर्धारण करने के लिए अनुमति दी गयी है, कि यह सार्वजनिक स्वास्थ्य संकट है"। दिनांक 30 अप्रैल 2021 को माननीय सुप्रीम कोर्ट ने भी केंद्र सरकार से पूछा है कि कोरोना से संबंधित दवाओं के लिए अनिवार्य लाइसेंस लागू करने हेतु सरकार क्यों नहीं सोच रही?

संपादक
इस अंक में

जयशंकर प्रसाद जी का जीवन दर्शन–शशि कपूर; डॉ॰ अजय मिश्र	1
नागार्जुन के काव्य में सामाजिक वर्ग चेतना का स्वरूप–विनोद कुमार; डॉ० अजय मिश्र	4
हिन्दी साहित्य में गीतों का संवेदना पक्ष–मोहन बैरागी; डॉ॰ अवनिश अस्थाना	8
प्राथमिक शिक्षा के सन्दर्भ में राष्ट्रीय शिक्षा नीति-2020-अभिषेक सिंह; डॉ॰ श्रीप्रकाश मिश्र	13
आधुनिक समाज-दृष्टि और निर्गुण काव्य–हेमंत कुमार	16
'दृश्य से अदृश्य का सफर में व्यक्त मनोवैज्ञानिकता'–प्रो० शर्मिला सक्सेना	19
प्राचीन भारत में दण्ड-व्यवस्था का स्वरूप–कुंवर विक्रम सूर्यवंश	23
मैत्रेयी पुष्पा के उपन्यासों में चित्रित स्त्री–डॉ. राम किशोर यादव	27
भारत में पंचायती राज व्यवस्था: एक समीक्षात्मक अध्ययन–अरूण कुमार	31
संवेगात्मक परिपक्वता के सन्दर्भ में किशोरावस्था के विद्यार्थियों की सामाजिक परिपवक्वता का अध्ययन–डॉ० अविनाश पाण्डेय	35
भारतीय शिक्षा में वेदों का महत्व–डॉ० भगवानदास जोशी	40
भारतीय स्वतंत्रता क्रांतिकारी आंदोलन में महिलाओं का योगदान—डॉ. वाय. एम. साळुंके	44
भारतीय राष्ट्रीय आन्दोलन और महात्मा गांधी–मुकेश चन्द्र	47
भारत में दिव्यांगकता का सामाजिक अध्ययन–डॉ० खोमन लाल साहु; डॉ० अश्वनी महाजन	50
द्विवर्षीय बी. एड. पाठ्यक्रम के प्रति शिक्षक प्रशिक्षार्थियों की अभिवृत्ति का अध्ययन रायपुर जिले के विशेष सन्दर्भ में	
–प्रियंका तिवारी; डॉ॰ प्रियंका रमेशराव डफरे	55
ओटीटी प्लेटफार्म की विषय वस्तु का उपयोग एवं संतुष्टि- सिरसा शहर के सन्दर्भ में एक अध्ययन–बेअंत सिंह; डॉ० रविंद्र ढिल्लो	57
माध्यमिक स्तर के विद्यार्थियों की सांवेगिक परिपक्वता का तुलनात्मक अध्ययन—ज्योति विजय; डॉ० चंद्रकान्त शर्मा	65
साहित्य के बदलते परिदृश्य एवं संस्कृत-रचना; डॉ० उषा नागर	69
चन्द्रप्रकाश जगप्रिय रों कहानी-साहित्य: कथ्य आरो शिल्प–श्वेता भारती	72
फुर्सत, रचनात्मकता और उत्पादन संबंध—डॉ॰ ज्योति कुमारी	76
हिमाचल की कहानियों में अवसरवादिता और प्रशासनिक तंत्र में भ्रष्टाचार—डॉ० ममता	79
कक्षा-8वीं के गणित पाठ्यपुस्तक का अधिगम प्रतिफल के संदर्भ में अध्ययन—डॉ० ए० के० पोद्दार; सोनम तम्बोली	83
गोपाल कृष्ण शर्मा 'फिरोजपुरी' व्यक्तित्व एवं कृतित्व-पिंकी दहिया	90
पंचायती राज एवं ग्राम विकास–केदार साहु; प्रोफेसर अश्वनी महाजन	93
नारदीय पुराण और पाणिनीय शिक्षा में वेदांग स्वरूप का समीक्षात्मक अध्ययन–कुमुद कुमार पाण्डेय	97
विकास और राष्ट्रीय एकता में युवा समूह की भूमिका–डॉ० जयराम बैरवा	103
विश्वगुरु के रूप में भारत और नई सदी–डॉ० रामलाल शर्मा	106
कोविड-19 के संदर्भ में उच्च शिक्षा की चुनौतिया—डॉ० श्रीमती गीता शुक्ला	108
आधुनिक काल में हिन्दी एवं संस्कृत साहित्य का महत्व–रघुनंदन हजाम	112
हमारे लोकप्रिय गीतकार कवि गिरिजा कुमार माथुर—डॉ० आर० के० पाण्डेय; चोवाराम यदु	115
मिथिलांचल की खास पहचान मखाना–डौली कुमारी; सुदीप कुमार	118
महात्मा बुद्ध कालीन भारत में जाति एवं वर्ण व्यवस्था एवं महात्मा बुद्ध का दृष्टिकोण–अमरीश कुमार	123
कवि शिवमंगल सिंह 'सुमन' के काव्य में अभिव्यक्त गाँधीवादी दर्शन—कुशल महंत	126
मुगल काल में पशु-पक्षी चित्रण : अकबर कालीन चित्रकला के विशेष सन्दर्भ में—डॉ० शैलेन्द्र कुमार	129
निराला के काव्य में भारतीय संस्कृति–डॉ॰ भंवर लाल प्रजापत	132

द्धविद्वकोण

संदेशकाव्य-परम्परा में 'मेघदूतम्' और 'संदेशरासक' : एक तुलनात्मक विवेचन—नर्मदा	138
तत्त्वार्थसूत्र में वर्णित जैन जीवन शैली द्वारा युगीन समस्याओं के समाधान–विकास जैन	141
भारतीय संस्कृति की रीढ़ जनक की बेटियां–डॉ० सविता डहेरिया	144
हरिसुमन बिष्ट के कथा-साहित्य में चित्रित दलित वर्ग–डॉ० नवीन चन्द्र	147
सूचना के अधिकार के क्रियान्वयन की प्रभावशीलता का स्तर: (रीवा के विशेष सन्दर्भ में)	
—डॉ० अमरजीत कुमार सिंह; गोकरण प्रसाद कुशवाहा	151
दलित साहित्य और साहित्यिकता—कमल किशोर कण्डावरिया	157
मृदुला सिन्हा के कथा-साहित्य में वर्णित सामाजिक समस्याएँ–डॉ० ब्रह्मदत्त शर्मा; डॉ० सुमेधा शर्मा	159
रामनगर क्षेत्र का व्यापारिक महत्व: एक ऐतिहासिक अध्ययन–कु॰ सीमा	162
आदिवासी बाहुल्य क्षेत्र में कपिलधारा कूप योजना का हितग्राहियों के आर्थिक विकास में योगदान का अध्ययन (सरदारपुर तहसील के विशेष सन्द्रर्भ में)–डॉ. डुंगरसिंह मुजाल्दा	164
स्नातक स्तर पर सामान्य एवं व्यावसायिक पाठ्यक्रम में अध्ययनरत विद्यार्थियों की अधिगम शैली प्राथमिकताओं एवं व्यक्तित्व शीलगणों का अध्ययन: डॉ॰ पर्णिमा नराणियां	174
छत्तीसगढ राज्य के ग्रामीण एवं नगरीय लिंगानपात में असमानता—डॉ० आर०एन० यादव: प्रो. ए. श्रीराम	182
समकालीन लोकतांत्रिक समस्याओं के विभिन्न स्वरूप व समाधान–डॉ॰ आरती यादव	188
कोशी क्षेत्र में तालाब, चौर और मोईन की उपयोगिता एवं महत्व—डॉ० मो० रफत परवेज	191
अपना मोर्चा उपन्यास में वर्णित छात्र आन्दोलन–सखबीर कौर	195
मरिया जनजाति का परम्परागत शिक्षा केन्द्र: घोटल-डॉ॰ बन्सो नरूटी: परोहित कमार सोरी	197
बद्धकालीन स्त्रियों की राजनीति में भमिका–डॉ॰ अजय कमार सिंह	202
विजय दान देथा के कथा साहित्य में नारी–डॉ॰ विदषी आमेटा: भमिका	204
उच्च शिक्षा में छात्राओं की खेलों में सहभागिता की स्थिति का अध्ययन (छिन्दवाडा जिले के विशेष संदर्भ में)	201
–कु० सायमा सरदेशमुख; डॉ० रवि कुमार	207
नागरिकों को लेकर राष्ट्रीय मुद्दों व नए मीडिया का अध्ययन (गुरूग्राम लोकसभा क्षेत्र के संदर्भ में)–हिमांशु छाबडा़	211
माध्यमिक स्तर के विकासात्मक शिक्षा में समस्याएँ एवं संभावनाएँ–डॉ० शोभना झा; डॉ० संजीत कुमार साहू; डॉ० राकेश कुमार डेविड	216
आदिवासी जीवन संघर्ष और साहित्य—डॉ० ओम प्रकाश सैनी	219
कारावास की समस्या बनाम पीछे छूटे बच्चे—डॉ० रेखा ओझा	224
कृषि विकास एवं वित्तीय समावेशन में किसान क्रेडिट कार्ड की भूमिका का समीक्षात्मक अध्ययन–डॉ. रतन लाल;	
डॉ॰ विवेक सिंह	229
दक्षिण एशिया में चीन के बढ़ते कदमों के बीच भारत की बदलती-पड़ोस की नीति–हिमांशु यादव	236
असगर वजाहत के उपन्यासों में अभिव्यक्त ''साम्प्रदायिकता''–माया देवी; डॉ॰ मृदुल जोशी	240
निजता एंव वर्तमान सूचना क्रांति: एक विश्लेषण—रूबीना; डॉ० कैलाश चन्द्र	244
झुग्गी झोपड़ी में निवासरत महिलाओं की समस्या (बिलासपुर शहर के विशेष संदर्भ में)—कु० आरती तिर्की; डॉ० ऋचा यादव	247
आर्यसमाज की हिंदी पत्रकारिता और स्वदेशी जागरण–विरेन्द्र कुमार	251
मौलाना अबुल कलाम आजाद के शैक्षिक विचार—डॉ० बृजेश कुमार पाण्डेय	256
उच्चतर माध्यमिक विद्यालयों के अंतर्मुखी एवं बहिर्मुखी विद्यार्थियों के अध्ययन संबंधी आदतों का तुलनात्मक अध्ययन करना–डॉ. विभा मिश्रा	259
अशिक्षा का जनजातीय जीवन पर प्रभाव और उसकी औपन्यासिक अभिव्यक्ति—डॉ० उमेश कुमार पाण्डेय	262
आज भी शोषित है नारी–डॉ॰ आंचल श्रीवास्तव; सौ॰ प्रभा दुबे	265
बागेश्वर जनपद के ग्राम पुरड़ा की महिलाओं की सामाजिक स्थिति का एक समाजशास्त्रीय अध्ययन–राखी किशोर	268
मूल्य शिक्षा के विशेष सन्दर्भ में बौद्ध कालीन शिक्षा प्रणाली की वर्तमान परिप्रेक्ष्य में प्रासंगिकता—डॉ. ईश्वर चन्द्र त्रिपाठी; बिपिन कुमार	274
अनुसूचित जाति एवं अनुसूचित जनजाति के बालकों की शैक्षिक समस्याओं का तुलनात्मक अध्ययन–शक्ति सिंह	277
परास्नातक स्तर के नगरीय एंव ग्रामीण विद्यार्थियों के सामाजिक परिपक्वता का उनकी शैक्षिक निष्पत्ति पर प्रभाव का अध्ययन —डॉ. प्रेमचन्द्र यादव; शिवाश्रेय यादव	280

मार्च-अप्रैल, 2021

6	\cap		
6		(CD)	
(C- ¹)	-		

बनते-बिगड़ते दाम्पत्य जीवन का दस्तावेज : एक पत्नी के नोट्स–डॉ. संजय भाऊसाहेब दवंगे	284
भावी व सेवारत शिक्षकों के जीवन मूल्य: एक अध्ययन–डॉ० चन्द्रावती जोशी	286
''अहिंसात्मक सत्याग्रह की सफल तकनीक और महात्मा गांधी"—डॉ. भूपेश मणि त्रिपाठी	292
ग्रामीण महिलाओं द्वारा स्वास्थ्य सुविधाओं का प्रयोग–अनुराधा शर्मा	295
प्राचीन संस्कृत साहित्य में मूलाधार चक्र का निरूपण–डॉ. दीप्ति वाजपेयी; कु. संजू नागर	299
छत्तीसगढ़ राज्य में रेशम उद्योग का रोजगार में योगदान: एक अध्ययन (कोरबा जिले के विशेष संदर्भ में)–होत्री देवी	302
मस्तिष्क गोलार्द्ध प्रबलता का पुरूष जिमनास्टिक खिलाड़ियों के मध्य वॉल्टिंग टेबल उपकरण पर प्रदर्शन पर पड़ने वाले	
प्रभाव का अध्ययन–डॉ० मिलिन्द भान्देव	307
भूमि उपयोग एवं भूमि आवरण में परिवर्तन: मकराना शहर, राजस्थान का एक स्थानिक कालिक अध्ययन–निशा चौधरी; डॉ॰ रश्मि शर्मा	311
प्रेमचंद के कथा-साहित्य में सामाजिक परिस्थितियों की अभिव्यक्ति–डॉ० के० आशा	320
नारी अस्मिता का वैश्विक स्वरूप–मधु गुप्ता	324
मुगल काल में व्यवसायिक शिक्षा (1526-1707)—नेहा सिंह; डॉ॰ शशि सिंह	329
'रेणु' के नाम बड़ी बहुरिया का पत्र–गायत्री कुमारी	332
लोक साहित्य में अभिव्यक्त लोक संस्कृति (आदी जनजाति के संदर्भ में)–सुश्री उसुम जोडके	335
भारत में महिला कैदियों के अधिकारों का उल्लंघन: एक सामाजिक और वैधानिक विश्लेषण–फरजीन बानो; प्रो० सबीहा हुसैन	339
पश्चिमी कोशी मैदान और पर्यावरणीय संकट–डॉ॰ नवनीत	344
खाद्य पदार्थों के अपमिश्रण से मानव स्वास्थ पर असर–डॉ॰ प्रतिभा प्रिया	347
मौर्यकालीन राजनीतिक जीवन में धर्मनिरपेक्षता का वर्तमान में प्रासंगिकता—डॉ० रूबी कुमारी	349
कौटिल्य के शैक्षिक विचार का वर्तमान में प्रासंगिकता—डॉ॰ सरिता कुमारी	352
महात्मा गाँधी और ग्राम स्वराज की अवधारणा - वर्तमान संदर्भ में–डॉ० शारदा कुमारी	355
बिहारीगंज के स्थानीय स्वशासन की ऐतिहासिक पृष्ठभूमि–श्रिया सुमन; डॉ० कल्पना मिश्रा	358
भारत में संविद सरकार की स्थिति – वर्तमान संदर्भ में–मधु कुमारी	361
बिहार में कृषि का आर्थिक परिदृश्य—ज्योति कुमारी	364
कोरोना काल में बीमा का महत्व–डॉ॰ प्रवीण कुमारी	367
महिला सशक्तिकरण और आरक्षण – एक अध्ययन—डॉ॰ स्वाति कुमारी	370
शिक्षा के क्षेत्र में दृष्टिबाधित छात्र-छात्राओं की स्थिति का अध्ययन–धीरज कुमार भारती; डॉ० आर० एन० शर्मा	372
छपरा नगर में साक्षरता का क्षेत्रीय वितरण: एक भौगोलिक अध्ययन—डॉ० संजय कुमार; शैलेन्द्र मालाकार	377
डॉ॰ शिवप्रसाद सिंह के उपन्यासों में वर्णव्यवस्था के आर्थिक पक्ष का अनुशीलन–डॉ॰ उर्विजा शर्मा	380
ज्ञानरंजन की कहानियों में मानवीय संवेदनाओं की मौलिकता–अर्जुन यादव	383
मुगल साम्राज्य पर नादिरशाह के आक्रमण के प्रभाव का विश्लेषणात्मक अध्ययन—डॉ॰ मनोज सिंह यादव	386
हस्तकशीदाकारी: संस्कृति एवं परम्पराओं का संवाहक—डॉ० अवधेश मिश्र; अनीता वर्मा	390
एकादश एक रस राष्ट्र रस की कवयित्री सुभद्राकुमारी चौहान–डॉ० संजय कुमार सिंह	392
साम्प्रदायिक सौहार्द और राष्ट्रीय एकता–सुमन देवी	396
कुमाऊँनी संस्कृति के उल्लेखनीय तत्व–मो० नाजिम; डॉ० सेराज मोहम्मद	399
'तस्मिन्निति निर्दिष्टे पूर्वस्य' 'तस्मादित्युत्तरस्य' 'स्वं रूपं शब्दस्याऽशब्दसंज्ञा' च त्रिषु सूत्रेषु विचार:–अंकित मनोड़ी	403
महाभारते वर्णित-राजधर्मस्य अनुशीलनंशान्तिपर्वण: परिप्रेक्ष्ये–डॉ० निवेदिता बैनर्जी	406
बिहार राज्य के ग्रामीण बेरोजगार युवकों को आर्थिक रूप से सबल बनाने में कौशल विकास योजना की भूमिका–मनोज कुमार साह	410
हिन्दी में आंचलिक उपन्यासों की परम्परा–डॉ॰ चिम्मन	413
भाषिक संवेदना के कवि रघुवीर सहाय–प्रतिभा देवी	416
-	

मार्च-अप्रैल, 2021

द्वच्चित्रजीय

'मुन्नी मोबाइल' में चित्रित लोकल और ग्लोबल परिदृष्य की उद्देश्यता–डॉ० सचिन मदन जाधव	420
महादेवी वर्मा: स्त्री-मुक्ति का स्वर—जागृति	423
शिव के विविध स्वरूपों का वर्णन–सीलू सिंह	426
कोरोना महामारी और बच्चों की शिक्षा वर्तमान परिप्रेक्ष्य में – एक अध्ययन–डॉ० रंजना कुमारी झा	431
उत्तराखण्ड के कुमाऊँ क्षेत्र का व्यापारिक महत्व का एक ऐतिहासिक अध्ययन: रामनगर के विशेष सन्दर्भ में—डॉ० नीरज रुवाली; कु० सीमा	434
हजारी प्रसाद द्विवेदी के उपन्यासों में नारी चरित्र–रोहित कुमार मिश्र	437
भारतीय सामाजिक सुधार आन्दोलन में ज्योतिवा फुले का योगदान–रितेश कुमार	440
कुंठा का व्यक्ति के मानसिक स्वास्थ्य पर प्रभाव का अध्ययन—डॉ० यतीन कुमार चौबीसा	444
बाल श्रमिकों का बाल श्रम के प्रति बोध–डॉ० वीरेन्द्र सिंह	448
अन्तर्राष्ट्रीय शांति के अनुरक्षण में संयुक्त राष्ट्र सुरक्षा परिषद की भूमिका—सोमेश गुंजन	452
वर्तमान परिदृश्य में श्रीलाल शुक्ल का साहित्यिक यथार्थ–डॉ० प्रमोद कुमार सिंह; कैलाश नाथ यादव	456
दलित चेतना की अवधारणा—संगीता; डॉ॰ यशवन्त वीरोदय	459
शेक्सपीयर के नाटको का जयशंकर प्रसाद पर प्रभाव—डॉ॰ मनोज विद्यासागर	464
हिन्दी सिनेमा का बदलता स्वरूप–डॉ० नमिता जैसल	467
प्रेमचन्द की कहानीकला की समीक्षा–डॉ॰ प्रीति राय	470
हिन्दी के विकास में पं. माधवराव सप्रे का योगदान—डॉ॰ गौकरण प्रसाद जायसवाल	472
कृष्णा सोबती के उपन्यासों में स्त्री-चेतना–एस कुमार गौर; डॉ॰ (श्रीमती) बी.एन. जागृत	476
छत्तीसगढ़ी लोकगीत ''पंथी'' में सामाजिक चेतना (छत्तीसगढ़ के विशेष संदर्भ में)–मनीष कुमार कुर्रे; डॉ॰ चन्द्रकुमार जैन	479
प्राचीन भारत मुद्रा की उत्पत्ति, विकास एवं महत्व—पिंकी कुमारी	484
कक्षा 11-वीं के छात्रों की अध्ययन आदत का उनके शैक्षिक उपलब्धि तथा समायोजन के सम्बन्ध में शोध—श्रद्धा श्रीवास; आनंद कश्यप	486
सिनेमा एवं पत्रकारिता का साहित्यिक योगदान–पूजा यादव	489
मथुरा स्थल का सांस्कृतिक अध्ययन: बौद्ध धर्म के विशेष संदर्भ में–मनीष कुमार	493
विज्ञानामृतभाष्यदिशा ब्रह्मण: स्वरूपविमर्श:—संदीप उनियाल	498
''बघेली भाषा एवं साहित्य'': एक अनुशीलन–डॉ० बृजेस धर दुबे	501
हाईस्कूल स्तर पर अध्ययनरत् विद्यार्थियों की विज्ञान विषय में शैक्षिक उपलब्धि के सन्दर्भ में आगमन चिंतन प्रतिमान की प्रभावशीलता	
का अध्ययन–डॉ॰ सरोज जैन; विन्देश्वरो प्रसाद सिंह	504
भारत में महिला संशक्तिकरण: मुद्दे एवं चुनौतियाँ–डाँ. गिरोज प्रसाद बैरवा	509
दलित साहित्य और सांस्कृतिक राष्ट्रवाद—डॉ॰ सुषमा गौडियाल	512
श्री आयंगर का योग से स्वास्थ्य लाभ के प्रति दृष्टिकोण—डॉ॰ प्रियंका शुक्ला	515
छत्तीसगढ़ राज्य में रेशम उद्योग का रोजगार में योगदान: एक अध्ययन (कोरबा जिले के विशेष संदर्भ में)–होत्री देवी	517
राष्ट्रवादी साहित्यकार आचार्य नीरज शास्त्री का हिंदी साहित्य को प्रदेय—डॉ॰ प्रेमचंद चव्हाण	521
संचार माध्यमों की भाषा–डॉ॰ रेणु गुप्ता	524
चन्द्रप्रकाश जगप्रिय रों कहानी-साहित्य: कथ्य आरो शिल्प-श्वेता भारती	527
वैज्ञानिक सोच: भारत की तात्कालिक आवश्यकता—डॉ० देवेन्द्र कुमार साहू	530
वर्तमान में ब्रिक्स की प्रासंगिकता—डॉ॰ मनीष कुमार साव	532
छत्तीसगढ़ विधानसभा चुनाव परिणाम –2018 का राजनीतिक विश्लेषण–अमृतेष शुक्ला; राहुल सिंह	534
डॉ॰ अम्बेडकर के बौद्ध धर्म सम्बन्धी विचार—डॉ॰ पूरण मल बैरवा; रमेश चन्द	538
शासकीय विद्यालयों में अध्ययनरत विद्यार्थियों की जीवन शैली का उनकी शैक्षिक समायोजन पर प्रभाव का अध्ययन	
—ानशा बोहने; प्रोफेसर सिद्धार्थ जैन; डॉ. लखन बोहने	543

	\mathbf{O}				
8	C C	C)	(U	

स्वयं सहायता समूह (SHG): ग्रामीण महिलाओं के लिए वरदान—नंदिता राय	547
उच्च शिक्षा में सूचना एवं संचार तकनीकी की प्रासंगिकता–डॉ. नीरज कुमार सिंह	551
वर्तमान समय में राष्ट्रीय सुरक्षा की चुनौतियाँ–डाॅ० रूपम मिश्रा	554
समकालीन महिला कथा-लेखन में मैत्रेयी पुष्पा की उपलब्धियाँ–डॉ० कंचन यादव	558
सोशल मीडिया से उपजता मानवीय मूल्यों का संक्रातिकाल–प्रो० माला मिश्र	563
लोकमंगल की पत्रकारिता और वर्तमान चुनौतियां–डॉ० राकेश कुमार दुबे	568
ज्ञान युग के संदर्भ में अब्दुल कलाम का शैक्षिक चिंतन–कुमारी प्रिती भारती	571
बिहार राज्य में मधुबनी जिला के अंतर्गत राजनगर ब्लॉक में सन 2021 में अलग अलग कक्षा में विभिन्न श्रेणियों के	
नामंकित बच्चे का भौगोलिक अध्ययन—जुली कुमारी	574
भारतीय सुरक्षा दृष्टि में भूटान की भू – रणनीतिक स्थिति का महत्व—सतीश कुमार	579
आधुनिक भारत के निर्माण में राजाराम मोहन राय का योगदान–डॉ॰ प्रियंका सिंह	583
छ0ग0 के कोरबा जिले में कोयला खनन से प्रभावित ग्रामीण समुदाय के समाजिक विकास का अध्ययन–डॉ० ऋचा यादव; सुनील कुमार	587
साहित्य दर्पण में वर्णित काव्य एवं काव्यपुरुष का स्वरूप कि प्रसांगिकता—डॉ० नरेन्द्र कुमार आर्य	593
समकालीन हिन्दी कविता—डॉ० बलराम गुप्ता	596
साठोत्तरी उपन्यासों में वैवाहिक जीवन—प्रो० रमेश के पर्वती	600
किन्नर केन्द्रित प्रमुख हिन्दी उपन्यासों की भाषिक सरंचना—ज्योति; डॉ० वीरेन्द्र सिंह यादव	605
नागार्जुन के कथा-साहित्य में अछूतोद्धार के प्रसंग—डॉ० मनोज कुमार	610
छपरा स्थित डच समाधि स्थल से प्राप्त मध्य कालीन स्थापत्यों का ऐतिहासिक एवं पुरातात्त्विक सर्वेक्षण–डॉ० श्याम प्रकाश	612
प्रौढ़ व्यक्तियों के दबाव स्तर परप्रेक्षाध्यान के प्रभाव का अध्ययन–डॉ० निर्मला भास्कर; अनिल विश्नोई; डॉ० अशोक भास्कर	617
सरगुजा जिले के उराँव महिलायों तथा बच्चों में कुपोषण एवं स्वास्थ्य का विश्लेषणात्मक अध्ययन	
(छ0ग0 राज्य के सरगुजा जिले के विशेष संदर्भ में)–शबाना परवीन; श्रीमती डॉ॰ रीचा यादव	621
सूचना का अधिकार और सुशासन (भारतीय परिप्रेक्ष्य में विश्लेषणात्मक अध्ययन)–आदित्य चतुर्वेदी	625
'पीढ़ियाँ' उपन्यास में साम्प्रदायिक अलगावाद और राष्ट्रवाद—संतोष कुमार भारद्वाज	628
छत्तीसगढ़ राज्य में सार्वजनिक वितरण प्रणाली का एक प्रशासनिक अध्ययन—डॉ० श्रीमती रीना मजूमदार; डॉ० प्रमोद यादव; बिसनाथ कुमार	632
भारत में किन्नरों की सामाजिक स्थिति–डॉ॰ नसरीन जान	636
पंचास्तिकाय समयसार : एक अनुशीलन–डॉ० पूजा राठी	638
असमीया ग्रामीण समाज में नामघर का स्थान—डॉ० जिनाक्षी चुतीया	642
प्रेमाख्यानक काव्यों की कथा के माध्यम से सूफी साधना की अभिव्यक्ति—डॉ० रंजय कुमार सिंह	645
लघु आवश्यकता, लघु ऋण व लघु उद्यम के माध्यम से गरीब महिलाओं का आर्थिक विकास–डॉ॰ रूबी सिन्हा	647
गाँधी दर्शन में तत्त्वमीमांसीय विचार: एक दार्शनिक अध्ययन–डॉ॰ रीतु कुमारी	651
आधुनिक युग में संगीत का स्वरूप–प्रीति सिंह	654
तिरूपति बालाजी मंदिर चित्तूर, आंध्र प्रदेश की सामुदायिक सहभागिता–आशुतोष पाण्डेय	656
चित्तौड़ का तीसरा साका (जौहर) और इसमें जयमल की भूमिका का ऐतिहासिक अध्ययन–डॉ. भगवान सिंह शेखावत	659
हवेली अथवा देवालय संगीत–प्रमोद कुमार	663
राजस्थानी भणतगीत और उसका महात्म्य—डॉ. श्रवण राम	666
ऑनलाइन माध्यमों में सूचनाओं को खोजने प्रक्रिया: एक विहंगावलोकन–डॉ० गौरीशंकर कर्मकार; डॉ० वर्षा रानी	671
क्षेत्रीय विकास में सूक्ष्म, लघु और मध्यम उद्योगों का योगदान (जनपद बागेश्वर के विशेष संदर्भ में)—चन्द्र प्रकाश सिंह	675
लोक साहित्य में राष्ट्रीय चेतना–डॉ॰ प्रवीण देशमुख	680
चम्पारण में नील उत्पादन एवं किसानों की व्यथा–पिंकी कुमारी	685
माध्यमिक विद्यालय के शिक्षकों के सफल शैक्षणिक अभ्यास : एक अध्ययन–डॉ० सरोज शर्मा; डॉ० प्रमोद जोशी	688
राजकपूर की फिल्मों में भारतीय समाज का चित्रण : 'जागते रहो' फिल्म के विशेष संदर्भ में–डॉ० आदित्य कुमार मिश्रा	693
समाजिक समावेशन और सतत् विकास के लिए गुणवता शिक्षा–रोहताश कुमार	698

(ix)

मुगल स्थापत्य कलाः एक विशुद्ध प्रतिमान–प्रभात वर्मा

उच्च माध्यमिक विद्यालय में कार्यरत अध्यापकों की व्यावसायिक संतुष्टि का अध्ययन–डॉ० वंदना; मिथिलेश कुमार जैमिनी

कामकाजी एवं गैर कामकाजी महिलाओं के विद्यार्थियों के उपलब्धि अभिप्रेरणा का तुलनात्मक अध्ययन–श्रीमती नूतन दूबे; डॉ॰ तृषा शर्मा

महात्मा गाँधी और भारतीय राष्ट्रवाद:- एक समीक्षात्मक अध्ययन–संजय कुमार पासवान

संस्कृत छन्द रचना विधान में प्रयुक्त होने वाले सहायक तत्त्वों का विवेचन–पंकज शर्मा

भारत में रक्षा बजट की निर्धारण प्रक्रिया एवं आवंटन–राहुल कुमार

भूमण्डलीकरण के युग में भारतीय नारी–डॉ० कमलेश कुमार सिंह

संसदीय प्रजातंत्र और गांधीय अवधारणा–डॉ० विकास यादव

छत्तीसगढ में कृषि विपणन: समस्या व समाधान-डॉ॰ गिरजा शंकर गुप्ता

हिन्दी का वैश्विक विस्तार: रामकथा के संदर्भ में–डॉ. कृष्ण चंद रल्हाण मैत्रेयी पुष्पा के औपन्यासिक रचनाओं में बुन्देलखण्डी संस्कृति का प्रभाव–हरिश्चन्द्र यादव; डॉ0 वन्दना शर्मा सामाजिक एवं शैक्षिक रूप से पिछडे वर्गों के मानव अधिकारों के संरक्षण के लिये राज्य मानवाधिकार आयोग, उत्तर प्रदेश की भुमिका : एक सामाजिक विधिक अध्ययन–कमल किशोर नरेश मेहता की काव्य-भाषा दुष्टि–डॉ. कामना पण्ड्य शीर्षक-परदेशी राम वर्मा के उपन्यास 'सूतक' में सामाजिक जागृति–डॉ. अभिनेष सुराना; कमल कुमार बोदले प्रेमचंद के कथा-साहित्य में सामाजिक परिस्थितियों की अभिव्यक्ति–अनिल कुमार पाण्डेय भारत में स्कूली शिक्षा: असमान पहूँच एवं सामाजिक असमानता का पुनरुत्पादन–अभ्यानंद श्रीमद्भगवद्गीता में योगत्रयसमन्वय–डॉ० मधु बाला सिन्हा समकालीन वैश्विक सुरक्षा और सामरिक परिदृश्य : भारतीय विदेश नीति के संदर्भ में–डॉ. सुधीर कुमार 'कार्य संतुष्टि और शिक्षण के प्रति दृष्टिकोण के संबंध में शिक्षक की प्रभावशीलता का अध्ययन'–डॉ० अमित कुमार पाण्डुलिपिविज्ञानस्य संरचनात्मकं स्वरूपम्-डॉ. अनिल प्रताप गिरि देश की आजादी में सतपुड़ा अचंल की जनजातियों की भूमिका–अरूण कुमार गोंडाने; डॉ. महेन्द्र गिरी

आचार्य हजारी प्रसाद द्विवेदी के निबन्धों में लालित्य-डॉ० राधा भारद्वाज जयपुर जिले में गिरते भूजल स्तर का कृषि उत्पादकता पर प्रभाव (2011 से 2020 के सन्दर्भ में)-अजीत सिंह; डॉ. राजेन्द्र प्रसाद

मध्यकालीन कवियों द्वारा भक्ति एवं संगीत का प्रचार-प्रमोद कुमार; डाॅ0 ज्ञानेश चन्द्र पाण्डेय राजनैतिक स्थितियाँ एवं सामन्तवाद के बदलते चेहरे; 'ढाई घर'–डाॅ० ममता पन्त

पुज्य आचार्यप्रवर पं0 बलवन्तराय भट्ट 'भावरंग जी' की महान् कृति 'भावरंग-लहरी' की उपादेयता-प्रीति सिंह; डॉ0 ज्ञानेश चन्द्र पाण्डेय भारत विभाजन की त्रासदी और हिन्दी कथा साहित्य-प्रीति देवी मौर्या पुराने गया जिला के क्षेत्र में नक्सलवाली गतिविधि और हिंसा: एक ऐतिहासिक अध्ययन–सचिन कुमार 'सागर सीमांत' की महाकाव्यात्मकता–प्रो० दामोदर मिश्र महिलाएं, उनके मानवाधिकार एवं विडम्बनाएं–तारा राम भारतीय अर्थव्यवस्था में डिजिटल भुगतान का महत्व-डॉ॰ गुलाब फलाहारी सहरसा जिला में लिंगानुपात सामयिक एवं स्थानिक वितरण का भौगोलिक अध्ययन–डॉ० धनंजय कुमार

कामकाजी तथा गैरकामकाजी महिला उपभोक्ताओं में प्रोसेक्ड पैकेज्ड भोज्य पद्धार्थों के क्रय पैटर्न का अध्ययन: पटना शहर के संदर्भ में -कुमारी सुषमा श्रीवास्तव; प्रो० (डॉ०) अंजु श्रीवास्तव रीतिकालीन साहित्य में ब्रज भाषा का योगदान-सुरेश चन्द्र पाल मीरा बाई के काव्य में आध्यात्मिक चेतना का सौंदर्यीकरण–कृपा शंकर; डॉ० स्मृति शुक्ला वर्त्तमान समय में सूचना – क्रांति की चुनौतियाँ–डाॅ० आभा लता चौधरी ग्रामीण महिलाओं को आत्मनिर्भर बनाने में स्वयं सहायता समूह की भूमिका- एक दृष्टि-अतिबला सिंह; प्रो0 (डॉ0) अजय कुमार सिंह 703

706

710

715

718

722

726

729

731

734

739

742

746

750

753

757

760

764

768

773

776

782

788

795

798

801

804

806

811

816

819

822

828

831

834

837

839

दुष्टिकोण

(x)

वर्तमान समय मे शिक्षक की स्थिति–सुरक्षा गर्ग; डॉ॰ चंद्रकांत शर्मा	842
भारत में असंगठित क्षेत्रों के मजदूर एवं उनकी समस्याएं–बंकेश कुमार शर्मा; प्रोफेसर (डॉ०) एन.एल गुर्जर	848
हिरासत में मौत एवं कैदियों के मानवाधिकार–राजेश कुमार त्रिपाठी; प्रोफेसर (डॉ०) एन.एल. गुर्जर	852
भारतीय प्रशासन और महिला अधिकार: एक नीति एवं विधि शास्त्रीय अवलोकन–डॉ० राजीव सागर; डॉ० अशोक कुमार	857
रंजना जायस्वाल की कविता में स्त्री संवेदना–डॉ॰ अनंत केदारे	863
मरण एवं गुणस्थान का अन्तः सम्बन्ध–श्रीमति अलका ङागा	870
- गिरमिटिया जीवन का संघर्ष सन्दर्भ 'लाल पसीना'–कोशिका शर्मा	875
प्रेमचंद के उपन्यासों में स्त्री-पुरुष के उदात्त प्रेम का चरित्र-चित्रण–विनोद कुमार; डॉ० कृष्ण चंद रल्हाण	879
भारत में महिला सशक्तिकरण के दिशा में किये गये प्रयास की दशा व दिशा—डॉ. भूपेन्द्र कुमार	883
भारतीय लोकतांत्रिक प्रणाली में सुशासन में चुनौतियाँ–डाॅ. राम नरेश टण्डन	886
ई-गवर्नेन्स: अवधारणा और महत्त्व–डॉ. अरूणा ठाकुर	889
विकास की अवधारणा व प्रशासनिक व्यवस्था महत्व–डॉ. (श्रीमती) अलकामेश्राम; डॉ. डी.एन. सूर्यवंशी; रामकृष्ण साहू	893
पूर्व मध्यकालीन भारत में दास प्रथा–डॉ॰ सुम्बुला फिरदौस	898
माध्यमिक विद्यालयों के बालक एवं बालिकाओं के आत्मबोध के विकास में सांस्कृतिक एवं आध्यत्मिक मूल्यों की भूमिका —डॉo प्रेमपाल सिंहर नवटीप कमार मौर्य	901
संगीत गायन के परिपेक्ष्य में आसन एवं पाणायाम का सांगीतिक अवदान–डॉ० जानेश चन्द्र पाण्डेय	904
बहता नगरीकरण एवं बदलता भ-उपयोग कोटपतली नगर के संदर्भ में-संजय कमार चौधरी• डॉ. राजेन्द्र पसाद	907
दर्शन शास्त्र के स्तम्भत्रय (जानयोग तथा जानोपलब्धि के विशेष सन्दर्भ में)–उमेश कमार• डॉ॰ अरुण कमार सिंह	912
अरुणाचल प्रदेश की लोक कला : गोदना कला–डॉ. जमना बीनी	917
दर्शनशास्त्र का समकालिक प्रकार्यात्मक संदर्भ–डॉ. मो. जियाउल हसन	922
नगरीयकरण का ग्रामीण अधिवासों पर प्रभाव (अलवर नगरीय क्षेत्र के सन्दर्भ में 1981 से 2011)—ऋषि प्रकाश शर्मा: डॉ. विजय कमार गप्ता	925
महाभारते वनपारिस्थितिक्या: मानवजीवने प्रभाव:—गौतम:	929
बेनीपरी के ललित निबन्धों में लोक व समाज–मीन पारीक	932
दलित चेतना एवं मोहनदास नैमिशराय : कहानियों के विशेष सन्दर्भ में–दाऊद अहमद परे: प्रो० दिलशाद जीलानी	936
रामदरश मिश्र कत उपन्यास 'थको हई सबह' का समीक्षात्मक अनशीलन–डॉ॰ सायरा बानो	939
'वर्षा का संग्रहीत जल': लीलधर मंडलोई की कविता में प्रकृति की नैसर्गिक छवि–रंजीत सिंह	942
महिला कैदियों हेत लिंग-विशिष्ट दष्टिकोण एवं उपचार की आवश्यकता—डॉ॰ समन लता चौधरी	946
हठप्रदीपिका व धेरण्ड संहिता में प्राणायाम का स्वरूप–ज्योति शर्मा. प्रो० गणेश शंकर गिरी	949
रीतिकाव्य: एक पनरावलोकन—डॉ॰ मदिता तिवारी	953
आहत स्वर के दस्तावेज: दलित कहानियाँ (संदर्भ: हिन्दी साहित्य)–डॉ० कपा किन्जल्कम	957
वर्तमान भारत में किसानों की दशा और दिशा–डॉ॰ स्मिता	960
महात्मा गांधी के प्रेरणा स्त्रोत–डॉ॰ अखिलेश पाल	966
प्रतिरोध की राजनीति–प्रवीण कुमार यादव–डॉ॰ प्रभात रंजन	969
स्वधर्म और स्वदेशी: गाँधीवादी विमर्श–डॉ॰ ज्ञानप्रकाश उपाध्याय	972
भारतीय दर्शन में अस्तित्ववाद और मानवतावाद : राधाकृष्णन के विचारों की प्रासंगिकता—डॉ॰ रेशमा सुलताना	975
स्वतंत्रता कालीन भारत की राजनैतिक स्थिति और पत्रकारिता–डॉ॰ शंकर जी	978
राजस्थान में मतदाता व्यवहार एवं जाति–डॉ॰ शीतल मीणा; जगदीश प्रसाद मीणा	982
महात्मा बुद्ध के जीवन एवं बौद्ध धर्म के दर्शन -सिद्धांतों के विविध आयाम–रामेन्द्र कुमार	985
्रू गाँधी का पर्यावरण दर्शन—डॉ॰ वर्षा रानी	990
उपभोक्ता आधारित अर्थव्यवस्था बनाम निवेश आधारित अर्थव्यवस्था–डॉ॰ संजीव कुमार सिंह	992
- महाप्राण ध्वनि का किशोरों के मानसिक स्वास्थ्य पर प्रभाव का अध्ययन—मोनिका सेठिया; डॉ. युवराज सिंह खेँगारोत	996

मुरिया जनजाति का परम्परागत शिक्षा केन्द्रः घोटुल

डॉ० बन्सो नुरूटी

(शोध निर्देशक), सहायक प्राध्यापक इतिहास, इतिहास अध्ययनशाला, पं. रविशंकर शुक्ल विश्वविद्यालय, रायपुर (छ.ग.)

पुरोहित कुमार सोरी

शोधार्थी (सहायक प्राध्यापक इतिहास), शास. गुण्डाधूर स्नातको. महाविद्यालय, कोण्डागाँव (छ.ग.)

सारांश

जनजातीय संस्कृतियों की प्रचीनतम और मौलिक संस्थाएँ उनकी विशेषताए हैं, घोटूल उनमें से एक हैं। यह मुरिया जनजाति की एक ऐसी संस्था है, जो संस्कृतिक दृष्टिकोण से बहुत महत्वपूर्ण हैं। युवक-युवतीयों की प्रगति के लिए जनजातीयाँ कितने सजग हैं तथा उनकी चतुर्मुखी अभिवृद्धि के लिए वे क्या-क्या करते रहतें है, इसकी जानकारी हमें इस संस्था के ऐतिहासिक अध्ययन एवं वर्तमान स्वरूप से भलीभाँति प्राप्त होता हैं। घोटुल अविवाहित लड़के एवं लड़कियों का एक ऐसा संगठन है, जिसका कार्य उन्हें अपने समाज की संस्कृति से परिचय कराना तथा अपनी संस्कृति के अनुरूप उनके मानसिक विकास को सुनिश्चित करना हैं। जनजाति परम्परा को एक पीढ़ी से दूसरी पीढ़ी तक पहुचाने वाली यह संस्था अपने युवक-युवतियों को सामाजिक भूमिका निभाना सिखाती है। इसके माध्यम से वे अपनी संस्कृति को पारंगत बनाते हुए उसके आधारभूत कार्य-सिद्धान्त द्वारा संगठन को सुदृढ़ता प्रदान करते हैं। यही कारण है कि घोटुल में प्रदत्त प्रशिक्षण से जनजाति जीवन में जो प्रभावकारी सहकारिता का विकास हुआ है, वह किसी दूसरे संगठन में संम्भव नहीं है। मुरिया जनजाति में प्रचलित परम्परागत शिक्षा का केन्द्र घोटुल आज भी कहीं-कहीं देखने को मिलता हैं। घोटूल एक पाठशाला हैं, जहाँ युवक-युवतीयों को समाज के प्रति दायित्व, कर्त्तव्य-निष्ठा, स्वच्छदता, अनुशासन, सेवा, सामुदायिक जीवन और चरित्र निर्माण का प्रशिक्षण दिया जाता है। इसमें दस वर्ष के उपर आयु के सभी अविवाहित लड़के-लड़कियाँ एकत्रित होकर नृत्य संगीत के द्वारा मनोरंजन करते हैं। यहाँ के युवक को चेलिक और युवती को मोटियारी कहा जाता है।

शब्द कुंजी: सहभागिता, चेलिक, मोटियारी, कुमारगृह, वनौषधियों, सौंदर्य, अद्वितीय, सांस्कृतिक, धार्मिक, और बौद्धिक।

अध्ययन का उददे्श्य:- मुरिया समाज का परम्परागत शिक्षा केन्द्र-घोटुल का ऐतिहासिक अध्ययन कर उसे प्रकाश में लाना शोधार्थी का मुख्य उददे्श्य है।

अध्ययन पद्धति:- प्रस्तुत अध्ययन बस्तर की मुरिया जनजाति का युवागृह-घोटुल पर केन्द्रित है। जहाँ मुरिया जनजाति के युवक-युवतियों को परम्परागत सामाजिक एवं सांस्कृतिक शिक्षा प्रदान की जाती है। प्रस्तुत अध्ययन प्राथमिक एवं द्वितीयक स्त्रोतों पर आधारित है। इसके अतिरिक्त पं. सुन्दरलाल शर्मा ग्रंथागार, रायपुर में विभिन्न पुस्तकों का अध्ययन किया।

भूमिका

आदिकाल से जब मानव सभ्यता का विकास हुआ, तब से षिक्षा मानव जीवन का एक महत्वपूर्ण अंग रहा है। बिना षिक्षा के मानव को असभ्य समझा जाता है। आदिकाल में युवकों को गाँव तथा शहर से दूर विरान वन में जाकर ऋषि-मुनियों के सानिध्य में रहकर शिक्षा प्राप्त करना होता था। इसे गुरूकुल शिक्षा भी कहा जाता है। इस शिक्षा केन्द्र में जहाँ युवाओं को सामाजिक, राजनीतिक, आर्थिक एवं धार्मिक शिक्षा प्रदान की जाती थी वहीं इसके साथ-साथ उन्हें आत्म रक्षा व चारित्रिक निर्माण की शिक्षा भी दी जाती थी। इस प्रकार की सम्पूर्ण षिक्षा से मानव का नैतिक विकास होता था। इसी प्रकार की शिक्षा भारत के जनजातीय समुदायों में आदिकाल से प्रदान की जा रही है। जिसे विभिन्न जनजातियों में भिन्न-भिन्न नामों से जाना जाता हैं, जैसे- अंगामी नागा जनजाति में 'किचुकी', गारो जनजाति में 'नोकपांते', मुण्डा तथा हो जनजाति में 'गिटिओरा', उराँव जनजाति में 'धुमकुरिया', भोटिया जनजाति में 'रंग-बंग', गोंड एवं मुरिया जनजाति में 'घोटुल' या 'गोटुल' आदि।[।] घोटुल वास्तव में नैष्य बिहार के 'कुमारगृह' हैं, जिसे अंग्रेजी में 'डार्मिटरी' तथा जर्मन भाषा में 'जुगलिग्स हाऊस' कहते हैं।²

यहाँ यह स्पष्ट कर देना समीचीन होगा कि मुरिया जनजाति की संस्था घोटुल का वास्तविक नाम गोटुल है। यह गोंडी भाषा का संयुक्त शब्द 'गो+टुल' के मेल से बना हुआ है। जहाँ गो यानि गोंगा अर्थात् दुःख और क्लेष निवारण शक्ति, जिसे विद्या कहा जाता है और टुल यानि ठिया या ठाना अर्थात् स्थल। इस तरह गोटुल का अर्थ गोंगा स्थल अर्थात् विद्या स्थल है।³

मुरिया जनजाति की संस्था घोटुल सामाजिक, सांस्कृतिक, धार्मिक, और बौद्धिक शिक्षा का केन्द्र है और इसीलिए विश्व की सर्वाधिक विकसित एवं

दुष्टिकोण

सुसंगठित संस्था है।⁴ इस शिक्षा केन्द्र के माध्यम से व्यक्ति के व्यक्तित्व का विकास कर उसे नैतिकता का पाठ पढ़ाया जाता है। बस्तर अंचल में निवासरत मुरिया जनजाति वस्तुत: गोण्ड जनजाति की उपषाखा मानी जाती है। इनके तीन भेद हैं- राजा मुरिया, झोरिया मुरिया और घोटुल मुरिया। राजा मुरिया, बस्तर रियासत की राजधानी जगदलपुर क्षेत्र के आसपास पायी जाती है, जिनका राजा व राजमहल के साथ घनिष्ठ संबंध था। संभवत: इसी कारण वे राजा मुरिया कहलाये। झोरिया मुरिया का निवास क्षेत्र लोहण्डीगुड़ा व कोटपाड़ क्षेत्र के आसपास पाया जाता है। जबकि घोटुल मुरिया मुख्यत: नारायणपुर, अंतागढ़ व कोण्डागाँव क्षेत्र में निवासरत हैं। घोटुल घर का प्रचलन इस क्षेत्र के मुरिया जनजातियों के मध्य अधिक होने के कारण संभवत: इन्हें घोटुल मुरिया कहा जाता है।

घोटुल एक प्रकार का युवागृह है, जहाँ अविवाहित युवक-युवतियाँ सामाजिक-सांस्कृतिक एवं नैतिक शिक्षा प्राप्त करते हैं। इस गृह की स्थापना का उद्देश्य विभिन्न प्रकार की दैनिक जीवन में आने वाली कठिनाईयों व समस्याओं का सहयोग की भावना से सामना करना था। यह एक ऐसा युवागृह है जहाँ मुरिया जनजति के युवक-युवतियाँ रात्रिकाल में मनोरंजन भी करते है। इस प्रकार इस संस्था के माध्यम से उन्हें उनके कर्त्तव्यों का बोध कराया जाता है।³

आदिवासी मुरिया जनजाति के अनुसार बस्तर में घोटुल गृह का जन्मदाता लिंगों पेन है। मुरिया जनजाति की ऐसी मान्यता है कि लिंगों पेन ने अपने जीवनकाल में सेमल वृक्ष के नीचे मुरिया युवक-युवतियों को सामाजिक, सांस्कृतिक एवं बौद्धिक षिक्षा प्रदान की, जिसे कालान्तर में घोटुल की संज्ञा दी गई।

घोटुल-गृह

घोटुल की स्थापना से पूर्व सर्वप्रथम घोटुलगृह के मध्य में एक लकड़ी का स्तम्भ विधिवत सिरहा एवं गाँव के मुखिया के द्वारा स्थापित किया जाता है, जिसमें उस गाँव में निवासरत मुरिया जनजाति के प्रत्येक गोत्र का चिन्ह अंकित किया जाता है। जैसे-कच्छिम, बकरा, करँगा, बोध मछली, नाग, बाघ, वन भैंसा आदि।⁶

घोटुल की बनावट प्रत्येक गाँव में अलग-अलग होती है। यह अधिकांशत: चार दीवारों से घिरा एक हालनुमा कमरा होता है, जिसमें श्रृंगार के सामान और वाद्ययंत्र रखे जाते हैं। कमरे के बाहर एक बड़ा आहाता होता है, जिसे लकड़ी की बाड़ी बनाकर घेर दिया जाता है। इस आहते पर जलाऊ लकड़ी रखी जाती है, जो वर्ष भर जलाने के काम आता है। उक्त प्रकार की एक आम संरचना घोटुल की होती है।⁷

कुछ गाँवों में घोटुल का निर्माण गाँव के बाहर खुले मैदान में किया जाता हैं, जिसमें प्राय: तीन हिस्से होते हैं- पहला आँगन, दूसरा बरामदा और तीसरा हालनुमा कमरा। आँगन के मध्य में एक खंबा होता है और नृत्य करने के लिए पर्याप्त मात्रा में खुली जगह होती है। बरामदे वाले भाग में तीस-चालीस चेलिक-मोटियारिनों (युवक-युवतियों) के रहने और अलाव जलाने की व्यवस्था होती है। हालनुमा कमरे में नृत्य संबंधी गहने, सौन्दर्य-प्रसाधन के सामान आदि आभूषणों के अलावा वाद्ययंत्र, कुल्हाड़ी, हंसिया, टंगिया, सूपा, टुकना, बाँस निर्मित टोकरियाँ आदि रखे जाते हैं। घोटुल का पूरा क्षेत्र लकड़ी के हाते से घिरा होता है, जिसके बीच में एक छोटा-सा दरवाजा बना दिया जाता है, जिसका उपयोग आने-जाने के लिए किया जाता है। बरामदे और कमरे की दीवारें लकड़ी, बाँस के खूंटे या ढाँचें पर मिट्टी की लिपाई कर बनाई जाती है। दीवार पर गोबर, छुई मिट्टी या चूना की पोताई की जाती है। घोटुल का छत बाँस और खपरेल या घास-फूस या जंगली बड़े पत्तों का बना होता है, जो लकड़ी की मजबूत आधार स्तंभ पर टिका रहता है।

घोटुल गृह

घोटुल के पदाधिकारी

घोटुल के सामान्य सदस्य युवक एवं युवतियों को चेलिक तथा मोटियारी कहा जाता है। घोटुल के मुखिया को सिरदार कहा जाता है, जो अत्यन्त ही सम्माननीय पद होता है। इसके आदेशों का पालन करना सभी सदस्यों का परम कर्तव्य माना जाता है। इसका चुनाव घोटुल के सदस्यों की राय पर मौखिक रूप से वर्ष में एक बार किया जाता है। एक व्यक्ति कई बार इस पद के लिए चुना जा सकता है। इसे घोटुल के सदस्यों की असहमति या विवाहित हो जाने पर पदच्युत किया जा सकता है।

रियासत काल से बस्तर में प्रशासनिक कार्यों के लिए परगना व्यवस्था को अपनाया गया था, जो आज भी विद्यमान है। बस्तर के राजा द्वारा परगना प्रमुख माँझी की नियुक्ति की जाती थी। इस माँझी को कार्य में सहयोग करने हेतु चालकी की नियुक्त थे। इसके अतिरिक्त ग्रामीण व्यवस्था के अंतर्गत पटेल, पुजारी, सिरहा, गायता, कोटवार आदि की नियुक्ति की जाती थी। इसी प्रकार घोटुल को संचालित करने के लिए भी विभिन्न पदाधिकारियों–माँझी, सरदार, पटेल, कोटवार आदि की नियुक्ति की जाती है।⁸

दुविदकौण

डॉ. शिवकुमार तिवारी⁹ के अनुसार घोटुल में अनेक पदाधिकारी होते हैं, जिन्हें पदानुसार कार्य करना होता है। जैसे चेलिक में दीवान, सरदार, मुरवान, कोटवार, चलान, मुँशी, जमादार, चालकी एवं वफेदार। दीवान का कार्य घोटुल के सदस्यों के कार्यकलापों पर निगरानी रखना होता है। मुरवान एवं कोटवार, युवक-युवतियों की उपस्थिति सुनिश्चित करते हैं। मुँशी घोटुल का हिसाब-किताब रखते हैं। चालकी, तम्बाकू या अन्य खाद्य पदार्थ सभी को बराबर मिले इसका ध्यान रखते हैं। वफेदार, घोटुल साफ-सुथरा रहे इस बात का ध्यान रखते हैं। इसी प्रकार मुतियारी में बेलोसा, ढुलोसा, तिरोका, निरोसा, पियासा, जानको तथा मालको पदाधिकारी होते हैं। बेलोसा, युवतियों की मुखिया होती है तथा इनके मध्य कार्य किपीजन का काम करती हैं। पियासा, जानको द्वारा घोटुल की साफ-सफाई की जाती है तथा पत्तियों के पत्तल एवं दोने बनाने का कार्य करती हैं।

घोटुल के चेलिक-मोटियारिन का दल

घोटुल सदस्यों की सामाजिक-सहभागिता

घोटुल में सामाजिक सहभागिता को विशेष महत्व में रखकर कार्य संपादित किया जाता है। इसके लिए विशेष नियम बनाये जाते हैं, जो मौखिक ही होते हैं। मौखिक होने के बावजूद इनके नियम अत्यन्त कठोर एवं सख्त होते हैं, जिसके कारण इन नियमों का उल्लंघन नहीं किया जाता है। अलग–अलग नियम तोड़ने पर अलग–अलग सामाजिक दण्ड के प्रावधान होते हैं।

चेलिक और मुटियारी कभी-कभी बतौर घोटुल कार्य करने जाते है। अगर मेहमानों का कोई दल पड़ोसी गाँव से नृत्य के लिए आ जाए तो उनकी आवभगत, खाने-पीने तथा अन्य व्यवस्था के लिए घोटुल के सदस्य ही जिम्मेदारी निभाते थे। इसके अतिरिक्त खेतों में उग आए जंगली पौधे साफ करने, फसल काटने या टूटी मेड़ जोड़ने में मदद करते हैं। इस कार्य के बदले उन्हें शाम का भोज दिया जाता है।¹⁰

घोटुल के पदाधिकारियों द्वारा कार्य का विभाजन किया जाता हैं। कार्य का विभाजन युवक-युवतियों की आयु और घोटुल में उनकी ग्रेडिंग पर आधारित होता है। घोटुल के प्रत्येक सदस्य को इस बात की जानकारी होती है कि कौन-सा युवक या युवती कौन-सा कार्य करेगा। जब कभी भी गाँव या समाज को इनकी सेवाओं की आवश्यकता होती हैं जैसे- जन्म, विवाह, मृत्यु संस्कार आदि सामाजिक कार्य के अलावा कृषि मजदूरी या सामूहिक-सहभागिता के कार्य, में इन युवाओं का सहयोग नि:शुल्क लिया जाता है।¹¹

घोटुल का धार्मिक-सांस्कृतिक कार्य

मुरिया जनजाति में वर्ष भर कोई न कोई धार्मिक पर्व का आयोजन होता रहता हैं। इस जनजाति में प्रत्येक पर्व को बड़े उत्साह से मनाने की परंपरा आदिकाल से चली आ रही हैं। इन पर्वों को मनाने में घोटुल के सदस्यों की सहभागिता अनिवार्य होती हैं क्योंकि पर्व के लिए आवश्यक व्यवस्था इन्हीं सदस्यों को करनी होती हैं। मुरिया जनजाति द्वारा मनाये जाने वाले पर्व जैसे- जात्रा, दियारी, आमाखाई, नवाखाई, हरेली तथा मड़ई-मेले आदि हैं। इन पर्वों को जनजातियों द्वारा सामूहिक रूप से मनाने की परम्परा हैं, इस कारण इनके आयोजन और व्यवस्था की सम्पूर्ण जिम्मेदारी घोटुल के सदस्यों की होती है।

जनजातियों में संगीत एवं कला को सजग बनाये रखने में अनेक सामाजिक एवं धार्मिक पर्वों का महत्वपूर्ण योगदान होता है। ऐसे अवसरों पर प्रत्येक जनजातीय परिवार का सदस्य संगीत एवं नृत्य में भाग लेता है। इन कार्यों में स्त्री, पुरूषों की तरह ही बराबर का अधिकार रखती हैं। मुरिया जनजाति के युवागृह-घोटुल में नृत्य एवं संगीत का प्रशिक्षण दिया जाता है।¹²

आदिवासी मुरिया समाज कुपार पारी लिंगों देवता को घोटुल संस्कृति का संस्थापक मानती है। उनके अनुसार लिंगों देवता नृत्य–संगीत के देवता हैं, जिन्होंने आदिवासियों को नृत्य–संगीत सिखाया। लिंगों देवता 18 वाद्ययंत्रों को एक साथ बजाने में निपुण थे, वे कला के देवता थे। उन्होंने ही बताया कि कब किस वाद्ययंत्र को बजाया जायेगा, किस वाद्य के साथ कौन सा गीत गाया जायेगा।¹³

नृत्य-संगीत घोटुल का प्राण है। प्रत्येक रात घोटुल का आँगन युवक-युवतियों के नृत्य-संगीत से मुखर होता है। घोटुल में होने वाले प्रमुख नृत्यों में ककसाड़ नृत्य, गौर नृत्य, मांदरी नृत्य, हुलकी पाटा, गेड़ी नृत्य, कोलांग, माओपाटा आदि।

दुष्टिकौण

ककसाड़ नृत्य

मांदरी नृत्य की वेषभूषा

मुरिया चिकित्सा पद्धति

आदिम समाज की चिकित्सा पद्धति में रोग, अस्वस्थता या अन्य बीमारी का उपचार परम्परागत पद्धतियों के आधार पर किया जाता हैं। इनके परम्परागत उपचार की प्रक्रिया में सामान्यत: जादुई एवं धार्मिक कर्मकाण्ड तथा वनौषधियों का उपयोग किया जाता हैं। इनके जादुई, झाड़-फूक या धार्मिक उपचार में मंत्र, पूजा पाठ, प्रार्थना एवं बलि प्रथा का प्रयोग किया जाता हैं। इसके अतिरिक्त गाँव के वैद्य द्वारा नाड़ी-धड़कन, त्वचा के रंग तथा आँख को देखकर भी इलाज किया जाता हैं। इसके साथ ही गाँव में वनौषधियों तथा जड़ी-बुटियों के सहारे भी हड्डी जोड़ की चिकित्सा किया जाता हैं। गाँव की दाई द्वारा प्रसव का कार्य कराया जाता है। इसके साथ ही गाँव में वनौषधियों तथा जड़ी-बुटियों के सहारे भी हड्डी जोड़ की चिकित्सा किया जाता हैं। गाँव की दाई द्वारा प्रसव का कार्य कराया जाता है। उक्त कार्य के लिए सिरहा, गुनिया या अन्य चिकित्सकों द्वारा किसी प्रकार का शुल्क नहीं लिया जाता बल्कि इसके बदले रोगी द्वारा नारियल, शराब, मुर्गा या अन्य भोज्य पदार्थ दिया जाता हैं। इस प्रकार इनके परम्परागत चिकित्सा पद्धति में गाँव के लिए आवश्यक प्राथमिक उपचार उपलब्ध होता हैं। गाँव के बड़े-बुजुर्ग वैद्य या सिरहा-गुनिया द्वारा घोटुल के सदस्यों से वनौषधियाँ, जड़ी-बुटी या अन्य आवश्यक सामग्री मंगाया जाता था, जिससे इन युवाओं को उसका ज्ञान हो जाता था। परन्तु घोटुल के हास होने के कारण उनकी परम्परागत चिकित्सा पद्धति को नुकसान हुआ हैं और परम्परागत चिकित्सा-ज्ञान जो पीढी-दर-पीढी संचारित हो रही थी, उसमें अवरोध उत्पन्न हो गया हैं।

घोटुल की काष्ठ कला

मुरिया जनजाति के लोग अपनी आवश्यकताुनरूप प्रत्येक काष्ठ वस्तु का निर्माण स्वयं करते हैं। परम्परागत रूप से मुरिया जनजाति लकड़ी की बनी वस्तुओं को अपनी जीवन पद्धति में समाहित करती रही है इसलिए मुरिया जनजीवन में काष्ठ निर्मित प्रत्येक वस्तु में सौंदर्य और अंलकरण का सार परिलक्षित होता है। इस कला में विभिन्न रूपाकारों को अपनी कला प्रदर्शन की सुविधा और स्वतंत्रता है इसलिए काष्ठ पर मुरिया की स्मृति और स्वप्न भी अंकित होते है। बस्तर की काष्ठ शिल्पकला मुरिया जनजाति की आदिम कला का अद्वितीय उदाहरण है।¹⁴

घोटुल के खम्बे भी मुरिया जनजाति की जातीय स्मृति के आदिम अभिप्रायों के अनुरूप गढ़ते हैं। घोटुल में इस कला की शिक्षा दी जाती थी। जहाँ विभिन्न प्रकार के पशु–पक्षियों की आकृतियाँ, कुल्हाड़ियाँ और तीर-धनुष बनाए जाते थे। कुल्हाड़ी और तीर-धनुष पर गरम लोहे से आकृतियाँ उकेरी जाती हैं। इनकी काष्ठ कला की एक अन्य विशेषता लकड़ी की कंघियों का निर्माण है। कंघी मुरिया जनजाति में प्रेम का प्रतीक माना जाता है। मुरिया युवक अपनी प्रेमिका को स्वयं अपने हाथों से इस लकड़ी की कलात्मक कंघी को बनाकर भेंट करता है। जो युवक अपनी प्रेमिका को जितनी सुंदर और कलात्मक कंघी भेंट करता है, वह उससे उतना ही अधिक प्रेम करने का प्रतीक माना जाता है। यह परंपरा आदिकाल से चली आ रही है।¹⁵

लकड़ी की कंघी सहित केष-श्रृंगार

लकड़ी का कंघी

घोटुल का पतन

आधुनिक सभ्यता के परिणामस्वरूप शहरी आकर्षण की वजह से जनजातियाँ अन्य सभ्य कही जाने वाली जातियों से सम्पर्क स्थापित कर अपनी परम्परा एवं रीति-रिवाजों का बहिष्कार कर रही है, जिसका प्रभाव युवागृहों पर भी पड़ा है। वे जनजातियाँ जिन्होंने युवागृहों का बहिष्कार कर दिया है, वे अपने को

द्धविद्वकौण

अन्य जनजातियों की अपेक्षा सभ्य मानने का दावा करती हैं। कुछ जनजातियों में तो अब घोटुल गुड़ी के ध्वंसावशेष ही नजर आते हैं। लोगों ने इन संस्थाओं के नकारात्मक पक्ष को लेकर इतनी अधिक कटु आलोचना की, जिसके कारण इसके अस्तित्व पर ही प्रष्नचिन्ह लग गया। अब तो ये लगभग विलुप्तप्राय हो गई हैं। जबकि इस संस्था के कुछ ऐसे प्रकार्य थे, जो समाज के लिए अत्यधिक महत्वपूर्ण थे। इन संस्थाओं का बहिष्कार करने के बजाय इनमें परिवर्तन एवं सुधार की आवष्यकता है, जिससे इनका समूह अधिक संगठित एवं सुव्यवस्थित हो सकता है।¹⁶

उपर्युक्त विवेचन से घोटुलों के उत्पत्ति एवं विकास के सम्बन्ध में केवल अटकलें ही लगाई जा सकती है। परन्तु इस प्रकार की संस्था आदिम जनजातियों के जीवन का महत्वपूर्ण अंग है। किसी भी सामाजिक संस्था का महत्व उसकी जीवन्तता है और घोटुल आज भी जनजातीय युवक-युवतियों को उनके जीवन रहस्य से अवगत कराते आ रहे हैं। घोटुल में न केवल काम सम्बन्धी प्रषिक्षण प्राप्त होता है अपितु वहाँ जनजातियों की रूचिपूर्ण कलात्मक प्रतिभा का विकास होता है।¹⁷

डॉ. हरिशचन्द्र उप्रेती¹⁸ के अुनसार जनजातीय परिवार अपने सदस्यों को शिक्षा प्राप्त करने की व्यवस्था स्वयं से करते हैं। यह एक सामाजिक-सांस्कृतिक अभिकरण के रूप में अपने दायित्व का निर्वहन करता है। मुरिया जनजाति के समान नागा, भोटिया, मुण्डा, उराँव आदि जनजातियों में युवागृहों के माध्यम से युवक-युवतियों को शिक्षा प्रदान की जाती है, जिससे उनका सामाजीकरण तथा मानसिक एवं सांस्कृतिक विकास होता है।

मुरिया घोटुल एक ऐसी संस्था हैं, जहाँ युवक-युवतियाँ अपने भावी जीवन के लिए तैयार होते हैं। वे यहाँ एक साथ रहकर, एक-दूसरे की भावनाओं, विचारधाराओं और विश्वासों को समझते हैं। यहीं पर इन्हें अपने परम्परागत सामाजिक-सांस्कृतिक जीवन मूल्यों का व्यवहारिक प्रशिक्षण दिया जाता है। घोटुल, बस्तर के जनजातीय जीवन की धड़कन स्पन्दन है। यह एक ऐसी समन्वयकारी संस्था है, जो न केवल उनके सांस्कृतिक पृष्ठभूमि को सबल बनाती है बल्कि समाजगत एवं व्यवक्तिगत उन्नति का द्वार भी खोलती हैं।¹⁹

वस्तुत: घोटुल एक सांस्कृतिक संस्था है, जो सामाजिक नियमों के अंतर्गत वयस्क हो रहे युवकों और युवतियों को आवश्यक शिक्षा प्रदान करती है।²⁰ इस प्रकार इस ''घोटुल'' संस्था के माध्यम से मुरिया जनजाति अपने युवक-युवतियों को सामाजिक नियमों आदि से परिचित कराता है। विभिन्न प्रकार के व्यवसाय, रीति-रिवाज, संगीत-नृत्य आदि की जानकारी इसी संस्था के माध्यम से प्रदान की जाती है।

निष्कर्ष

अत: ''घोटुल'' नामक युवागृह जैसी संस्था के माध्यम से मुरिया जनजाति अपने युवक-युवतियों को सामाजिक-सांस्कृतिक नियमों आदि से परिचित कराता है और उन्हें एक नैतिक जिम्मेदारी के साथ सामाजिक व्यक्तित्व प्रदान करता है। इसके अतिरिक्त उन्हें विभिन्न प्रकार के व्यवसाय, रीति-रिवाज, नृत्य-संगीत आदि की जानकारी भी इसी संस्था के माध्यम से प्रदान की जाती हैं, जो पीढ़ी दर पीढ़ी संचारित एवं प्रसारित होती रहती है। वर्तमान में इस जनजातीय संस्था को अस्तित्व में लाये जाने के प्रयास समाज एवं राज्य शासन के स्तर पर किया जा रहा है। राज्य शासन द्वारा बस्तर के घोटुल गुड़ी निर्माण हेतु ग्राम स्तर पर प्रस्ताव लिया जा रहा है तथा इसके निर्माण के लिए शासकीय राशि भी स्वीकृत की जा रही है। इन संस्थाओं के माध्यम से जनजातीय संस्कृति का चाद्ययंत्रों को संरक्षित किया जा सकता है। जनजातीय संस्कृति को जीवित रखने में बस्तर की घोटुल संस्था के माध्यम से जनजातीय संस्कृति को जीवित रखने में बस्तर की घोटुल संस्था के माध्यम से जनजातीय संस्कृति को जीवित रखने के जा रही है। इन संस्थाओं के माध्यम से जनजातीय संस्कृति को जीवित रखने में बस्तर की घोटुल संस्था अत्यंत उपयोगी सिद्ध होगी।

संदर्भ ग्रन्थ

- 1. उप्रेती, डॉ. हरिशचन्द्र, भारतीय जनजातियाँ: संरचना एवं विकास, राजस्थान हिन्दी ग्रन्थ अकादमी, जयपुर, 2002, पृ. 279-280
- 2. तिवारी, डॉ. शिवकुमार एवं डॉ. श्रीकमल शर्मा, मध्यप्रदेश की जनजातियाँ, मध्यप्रदेश हिन्दी ग्रन्थ अकादमी, भोपाल, 1998, पृ. 59
- 3. बेहार, डॉ. रामकुमार, संपादक, बस्तर: एक अध्ययन, मध्यप्रदेश हिन्दी ग्रन्थ अकादमी, भोपाल, 1995, पृ. 48
- 4. वेरियर एल्विन, पृ. 7
- 5. बेहार, रामकुमार एवं निर्मला, बस्तर आरण्यक, निर्मला बेहार धरमपुरा, जगदलपुर, 1985, पृ. 73
- 6. पत्रिका, एशियन मिरर, स्पेशल इश्यू, वोल्यूम-2, इश्यू-4, सितम्बर 2015, पृ. 12
- 7. पाण्डेय, शिव कुमार, बस्तर की मुरिया जनजाति, सरस्वती बुक्स, भिलाई, 2019, पृ. 85
- 8. पत्रिका, एशियन मिरर, पूर्वोक्त, पृ. 10-11
- 9. तिवारी, डॉ. शिवकुमार एवं डॉ. श्रीकमल शर्मा, पूर्वोक्त, पृ. 61-62
- 10. वेरियर एल्विन, मुरिया और उनका घोटुल, राजकमल प्रकाशन, नई दिल्ली, 2014, पृ. 61
- 11. मजूमदार, डी. एन. रेसेस एण्ड कल्चर्स ऑफ इण्डिया, किताबिस्तान, इलाहाबाद, 1944, पृ. 160
- 12. उप्रेती, डॉ. हरिशचन्द्र, पूर्वोक्त, पृ. 146-147
- 13. पाण्डेय, शिव कुमार, पूर्वोक्त, पृ. 87
- 14. अर्पण, बस्तर के जनजातीय शिल्प, ओम प्रकाशन, दिल्ली, 2016, पृ. 107
- 15. वही, पृ. 113
- 16. उप्रेती, डॉ. हरिशचन्द्र, पूर्वोक्त, पृ. 290
- 17. तिवारी, डॉ. शिवकुमार एवं डॉ. श्रीकमल शर्मा, पूर्वोक्त, पृ. 60-61
- 18. उप्रेती, डॉ. हरिशचन्द्र, पूर्वोक्त, पृ. 103
- 19. बेहार, डॉ. रामकुमार, पूर्वोक्त, पृ. 50
- 20. तिवारी, डॉ. शिवकुमार एवं डॉ. श्रीकमल शर्मा, पूर्वोक्त, पृ. 57

रियासतकालीन बस्तर में मुरिया जनजाति की प्रषासनिक व्यवस्था ADMINISTRATIVE SYSTEM OF MURIA TRIBE IN PRINCELY BASTAR

शोध निर्देषक **डॉ. बन्सो नुरूटी** सहायक प्राध्यापक इतिहास अध्ययनषाला पं. रविषंकर शुक्ल विष्वविद्यालय, रायपुर(छ.ग.) शोधार्थी **पुरोहित कुमार सोरी** सहायक प्राध्यापक इतिहास शास. गुण्डाधूर स्नातको. महाविद्यालय, कोण्डागाँव (छ.ग.)

Absract :-

The position of the tribes and their political structure reflects the regional aspects. The decision of the tribal panchayat, gram or the village head is a matter of legal decision for the tribes. Each tribal village has its own political mechanism to discuss its case. Each tribal community has its own organization, this tribal organization is relatively weak in areas, where the influence of the outside world is high, but is very strong in difficult areas, like modern society administrative organization is also found in primitive society. Administration controls the behaviour of the society. The traditional judicial system of Muria tribe is based on lineage Gotra tradition, regional and religious beliefs. Village is the smallest unit under the traditional Muria judicial system in the princely state of Bastar, every person considered at his duty to follow the traditional laws. Some of these posts are such that are working in the present democratic system. That is why these traditional administrative system have special importance in the primitive Muria society.

सारांष :--

जनजातियों की स्थिति तथा उनकी राजनीतिक संरचना क्षेत्रीय पक्ष को प्रदर्शित करती है। जनजातीय पंचायत, ग्राम पंचायत अथवा ग्राम प्रधान का निर्णय जनजातियों के लिए कानूनी निर्णय के समान होता है। प्रत्येक जनजातीय ग्रामों में अपने मामलों की विवेचना करने के लिए अपनी राजनीतिक कार्य प्रणाली होती है। प्रत्येक जनजातीय समुदाय का अपना संगठन होता है, यह संगठन ऐसे क्षेत्रों में जहां पर बाह्य दुनियाँ का प्रभाव अधिक है अपेक्षाकृत कमजोर होता है किन्तु दुर्गम क्षेत्रों में यह अत्यधिक मजबूत होता है। आधुनिक समाज की भाँति आदिम समाज में भी प्रशासन संगठन पाया जाता है। प्रशासन समाज के व्यवहारों का नियंत्रण करते हैं। मुरिया जनजाति का पारम्परिक न्याय व्यवस्था वंश, गोत्र परम्परा, क्षेत्रीयता एवं धार्मिक विश्वासों पर आधारित होता है। पारम्परिक मुरिया न्याय व्यवस्था के अंतर्गत ग्राम सबसे छोटी इकाई होती है। रियासत कालीन बस्तर में परम्परागत कानूनों का पालन करना प्रत्येक व्यक्ति अपना कर्तव्य समझता था। इनमें से कुछ पद ऐसे हैं, जो वर्तमान लोकतांत्रिक व्यवस्था में कार्यरत हैं। इसी कारण इन परम्परागत प्रषासनिक व्यवस्था का आदिम मुरिया समाज में विषेष महत्व है।

Key words :- Panchayat, Organization, Traditional, Mukhiya, Gayata, Riyasat, Participation,

शब्द कुंजी :-- पंचायत, संगठन, परम्परागत, आदिम, मुखिया, गाँयता, रियासत, लोकतांत्रिक, सहभागिता। अध्ययन का उद्देष्य :-- प्रस्तुत अध्ययन का उद्देष्य रियासतकालीन बस्तर की परम्परागत प्रषासनिक व्यवस्था को प्रकाष में लाना है। इस व्यवस्था का महत्व आदिम काल से वर्तमान तक बना हुआ है। अध्ययन पद्धति :-- प्रस्तुत अध्ययन बस्तर की मुरिया जनजाति की पारंपरिक प्रषासनिक व्यवस्था पर केन्द्रित है। प्रस्तुत अध्ययन प्राथमिक एवं द्वितीयक स्त्रोतों पर आधारित है। इसके अतिरिक्त पं. सुन्दरलाल षर्मा ग्रंथागार, रायपुर तथा शासकीय काकतीय स्नातकोत्तर महाविद्यालय, जगदलपुर में विभिन्न पुस्तकों का अध्ययन किया।

भूमिका :--

किसी भी षासन–प्रषासन में वहाँ की प्रषासनिक प्रणाली, उस शासन–प्रषासन हेतु रीढ़ की हड्डी होती है। प्राचीन राजतंत्रीय प्रणाली से लेकर वर्तमान की प्रजातंत्रीय शासन प्रणाली तक इसके महत्व को नकारा नहीं जा सकता। शासन का आधार स्तंभ सदैव ही प्रषासनिक प्रणाली या कार्यपालिका रही है। शासन के निर्णयों को जन सामान्य तक पहुंचाने की महत्वपूर्ण जिम्मेदारी षासन के इन्हीं अंगों को ही निभानी होती है। बस्तर सदियों से आधुनिक समाज की व्यवस्था से कटा रहा है एवं स्वतंत्रता के उपरान्त भी आज तक, यदि कहा जाय कि यहां की प्राचीन जनजातीय राजनीतिक संस्थाएँ स्थापित है, तो शायद कोई अतिष्योक्ति नहीं होगी। बस्तर की शासन प्रणाली, जिसका जनजातियों पर विषेष प्रभाव है, राजतंत्रीय प्रणाली ही है। इस शासन प्रणाली में राजा, ईष्वर का प्रतिनिधि तथा बस्तर की अराध्य देवी माँ दंतेष्वरी का प्रमुख पुजारी होता है। बस्तर की राजतांत्रिक व्यवस्था, जिसका सीधा सम्बन्ध धर्म से था, के सुचारू रूप से संचालन हेतु विभिन्न धार्मिक पदाधिकारी नियुक्त किए गए थे, जिनका कार्य राजा के धार्मिक आदेषों का पालन करना होता था। जिनमें माँझी, चालकी, गाँयता, पटेल, कोटवार तथा अटपहरिया जैसे पद थे, जिनका अस्तित्व आज भी यदाकदा बस्तर में देखने को मिलता है। कालांतर में इन्हीं पदाधिकारियों द्वारा राजनीतिक गतिविधियों को भी संचालित किया जाने लगा, जैसे लगान वसूली, कानून एवं शांति व्यवस्था, विकास कार्य आदि। इस प्रकार ये पद और इनकी संस्थाएँ राजनीतिक एवं धार्मिक रूप से बस्तर के गाँवों को नियंत्रित करती थी और जिनका प्रभाव बस्तर के गाँवों में परम्परागत रूप से आज भी विद्यमान हैं। ग्राम सभाएँ स्थानीय विवादों का निपटारा परंपरागत रूप से करती थीं। यद्यपि अब ये मात्र धार्मिक कार्य तक सीमित हो गए हैं, परन्तु गाँवों के महत्वपूर्ण निर्णयों में इनकी सलाह एवं सहभागिता अनिवार्य होती है। इन पदाधिकारियों तथा उनके कार्यों का स्पष्ट उदाहरण हमें प्रतिवर्ष 75 दिनों तक आयोजित होने वाले बस्तर दषहरा में देखने को मिलता है। इस प्रकार आज भी आधुनिक सभ्यता की सामाजिक–धार्मिक एवं राजनीतिक संस्थाएँ उन्हें भीतर तक प्रभावित नहीं कर पायी है।

राजा :- रियासत काल में बस्तर के शासक अपने को राजा–महाराजा कहते थे। बस्तर के आदिवासियों में उनके प्रति अपार श्रद्धा एवं आदर है। वे राजा को देवतुल्य मानते हैं तथा उसे बस्तर की अराध्य देवी माँ दंतेष्वरी का मुख्य पुजारी होने के कारण उसका प्रतिनिधि के रूप में महत्व देते हैं।

बस्तर रियासत के राजा का पद आनुवंषिक था। साधारणतः राजा का ज्येष्ठ पुत्र पिता का उत्तराधिकारी होता था, परन्तु उत्तराधिकार के संघर्ष का उदाहरण भी हमें प्राप्त होता है। राजा रियासत के मुख्य न्यायाधिकारी थे, जिसका अपनी प्रजा पर पूर्ण अधिकार था।¹ परम्परागत रूप से राजा को मृत्युदण्ड

देने या मृत्युदण्ड प्राप्त व्यक्ति को क्षमा प्रदान करने का अधिकार था। न्याय व्यवस्था में राजा के अतिरिक्त उसके मांडलिक एवं अधीनस्थ कर्मचारी होते थे। राजा को उसके कार्य में सहायता देने के लिए दीवान एवं उसके अधीनस्थ कर्मचारी होते थे।² इस प्रकार बस्तर के राजा रियासत के सभी मामलों का अंतिम निर्णायक होता था।

दीवान :- बस्तर रियासत में राजा के शासन प्रबंध की व्यवस्था को सुचारू रूप से संचालित करने के लिए दीवान की नियुक्ति राजा द्वारा की जाती थी। दीवान को पूरे राज्य की शासन व्यवस्था के लिए महत्वपूर्ण अधिकार प्राप्त होते थे। इस कारण जब राजा कमजोर होता था तो दीवान ही पूरे राज्य की शासन व्यवस्था का संचालन करते थे। सन 1854 में बस्तर रियासत के ब्रिटिष सर्वोच्चता के अंतर्गत आने से पूर्व यह भोंसलों का करद राज्य था।

सन् 1854 में बस्तर रियासत के ब्रिटिष संवाच्चतों के अतगत आने से पूर्व यह मासलों को करदे राज्य था। भोसलें वार्षिक कर प्राप्त करने तक ही बस्तर रियासत से अपना संबंध सीमित रखते थे और यहाँ की प्रषासनिक व्यवस्था पर कोई हस्तक्षेप नहीं करते थे। परन्तु ब्रिटिष सत्ता के अधीन आ जाने के बाद बस्तर राजा की स्थिति में परिवर्तन हो गया और राजा अब नाममात्र का ही राजा रह गया। राजा की विभिन्न शक्तियाँ दीवान को हस्तांतरित हो गई, क्योंकि अब दीवान की नियुक्ति में ब्रिटिष शासन ने हस्तक्षेप करना प्रारंभ कर दिया और धीरे–धीरे ब्रिटिष शासन द्वारा उसी व्यक्ति को दीवान बनाया गया, जो उनके लिए लाभदायक था।³

कालान्तर में परम्परागत रूप से दीवान की नियुक्ति राजा की इच्छा पर निर्भर न रहकर ब्रिटिषकाल में अंग्रेजी शासन की सहमति और अनुमति पर निर्भर रह गयी। इस प्रकार से परम्परागत आदिम व्यवस्था पर ब्रिटिष हस्तक्षेप ने बस्तर के आदिवासियों को भ्रम में डाल दिया। ब्रिटिष शासन द्वारा दीवान की नियुक्ति में हस्तक्षेप ने बस्तर में विद्रोह एवं आन्दोलनों को आक्रोषित करने का काम भी किया, जिसके कारण सन् 1876 का मुरिया आन्दोलन एवं सन् 1910 का महान भूमकाल आन्दोलन जैसे महान आन्दोलनों ने बस्तर की जनजातियों को आन्दोलित किया।

माँझी :– माँझी किसी एक परगना का मुखिया होता है। इनका कार्य अपने परगना में रियासत के आदेषों का पालन करवाना था। यह राजनीतिक, सामाजिक, आर्थिक एवं धार्मिक कार्यों की देखरेख करता था। रियासतकाल में गाँवों को समूहों में बाँटा गया था। गाँवों के प्रत्येक समूह को परगना और प्रत्येक परगना प्रमुख को माँझी कहा जाता था। प्रत्येक परगना की एक परगना पंचायत होती थी जो गाँवों के मामलों की एक अपीलीय अदालत का कार्य भी करती थी।⁴

प्रत्येक परगना की संरचना धार्मिक और प्रषासनिक दो समानान्तर व्यवस्था के अनुसार होती है। इस कारण प्रत्येक परगना में दो माँझियों की नियुक्ति की जाती है। धार्मिक और सामाजिक परगना प्रमुख को देव—माँझी और प्रषासनिक प्रमुख को परगना—माँझी कहा जाता है। यह पद रियासतकाल से वंषानुगत हैं। देव—माँझी का चुनाव सर्वसम्मत होता है, जिसे परगने में निवासरत लोगों द्वारा चुना जाता है जबकि परगना—माँझी की नियुक्ति में प्रषासन का भी निर्णय होता है। एक परगने के अंतर्गत लगभग 40—50 गाँव आते हैं। परगने के अंतर्गत किसी भी वाद—विवाद का निर्णय इन दोनों माँझियों की अध्यक्षता में सामूहिकता के आधार किया जाता है।⁵

डॉ. रामकुमार बेहार⁶ के अनुसार, ग्राम पंचायतों में हुए[ँ] निर्णयों के विरूद्ध यदि किसी को अपील करनी होती थी, तो वह परगना पंचायत में अपील कर सकता था। ग्राम पंचायतें खुली और निष्पक्ष अदालत होती थी। इस परगना पंचायत का प्रमुख माँझी होता था, जिसे राजदरबार में बैठने का गौरव प्राप्त था।

चालकी :- रियासतकालीन बस्तर में ब्रिटिष प्रषासन से पूर्व गाँवों से राजस्व वसूल करने का कार्य चालकी के द्वारा होता था। इसके अंतर्गत अनेक गाँव हुआ करते थे। यह अन्य रियासत के पदाधिकारियों को एक गाँव से दूसरे गाँव तक ले जाने एवं वहाँ के निवासियों से परिचित कराने का कार्य करता था।⁷ यह पद वंषानुगत होता था और रियासतकाल में सामाजिक एवं धार्मिक व्यवस्था को बनाए रखने हेतु राजनीतिक रूप से इस पद का सृजन हुआ था। चालकी को गाँव या ग्रामीण व्यवस्था का मुखिया कहा जाता था। राजस्व का भुगतान राज्य की मुख्य खाद्य कोसरा या कोदो के माध्यम से की जाती थी। चालकी द्वारा एकत्र राजस्व अन्न के रूप में जमींदार को प्रदान किया जाता था।⁸ इस प्रकार रियासतकालीन बस्तर में चालकी एक महत्वपूर्ण तथा अधिकाषतः वंषानुगत पद था। इनका कार्य राजा एवं माँझी के मध्य सूचनाओं का आदान–प्रदान करना था। यह माँझी के कार्य में सहयोग भी करता था।

मुखिया :- बस्तर के प्रत्येक गाँव में एक धर्मनिरपेक्ष और धार्मिक अधिकारियों की एक संस्था थी, जिसका एक मुखिया हुआ करता था, जिसे ग्राम प्रधान भी कहा जा सकता है। प्रत्येक ग्राम में इसी ग्राम प्रधान की अध्यक्षता में एक पंचायत हुआ करती थी, जो राज्य की पुरानी प्रषासनिक प्रणाली का एक अवषेष है।⁹ प्रत्येक ग्राम मुखिया के पास हाथ में पकड़ने की एक अच्छी लकड़ी होती थी, जिसमें ऊपर की ओर पीतल या लोहे की पाँच-सात मुंदरियाँ लगी होती थी। जब मुखिया चलते थे, तो यह बजने लगती थी।¹⁰ इनकी आवाज सुनकर लोग यह समझ जाते थे कि ग्राम-मुखिया कहीं जा रहे हैं। यदि उन्हें किसी प्रकार से मुखिया से बात करनी होती थी, तो वे यह आवाज सुनकर एकत्र हो जाते थे।

वार्ल्यानी एवं साहसी¹¹ के अनुसार, प्रषासन की सबसे छोटी ईकाई ग्राम थी। इन ग्राम पंचायतों के माध्यम से ही ग्रामीण आपसी वाद–विवादो का निपटारा किया करते थे।

एल. फिंसटन ने अपनी रिपोर्ट में लिखा हैं– ''पंचायतों का निर्णय स्पष्ट और निष्पक्ष होता था, इससे गरीबों को बहुत लाभ पहुँचा और वे व्यर्थ के मुकदमेबाजी से मुक्त हो जाते थे।'' जेनकिंस की रिपोर्ट अनुसार–''पंचायतों में नियमित प्रणाली का अभाव था, तथापि वे न्याय के क्षेत्र में सहकारिता से कार्य करने का एक प्रषिक्षण स्थल था।''¹²

परन्तु बस्तर में ब्रिटिष शासन के प्रारंभ होने के साथ ही बस्तर की आदिम परम्परागत पंचायतों एवं ग्राम तथा परगना प्रमुखों का मान–सम्मान कम होता चला गया जिसके कारण इन समुदायों में प्रषासन के प्रति असंतोष का आरंभ हुआ।¹³

पटेल :-- ग्रामीण संरचना में प्रषासनिक पदाधिकारी पटेल होता हैं। यह गाँव तथा राजतंत्र और वर्तमान में लोकतांत्रिक प्रषासन के बीच की कड़ी होता है। यह गाँव के सामाजिक, धार्मिक और प्रषासनिक कार्य के प्रति उत्तरदायी होता है। यह पद वंषानुगत है, जो रियासतकाल से चला आ रहा है। प्रषासनिक कार्य के अंतर्गत ग्रामीणों से राजस्व एकत्र करने का कार्य इसकी प्रमुख जिम्मेदारी होती है। इसके सहयोग के लिए गाँव में कोटवार की नियुक्ति की जाती है।¹⁴

इस प्रकार रियासतकालीन बस्तर की ग्रामीण व्यवस्था में पटेल का पद अत्यंत महत्वपूर्ण था। यह ग्राम से राजस्व वसूल कर माँझी व चालकी के माध्यम से रियासत को भिजवाता था। इसे ग्राम के छोटे–छोटे विवादित मामलों को सुलझाने का अधिकार भी प्राप्त था। गाँयता :- रियासतकालीन बस्तर में यह ग्रामीण व्यवस्था का एक महत्वपूर्ण पद था। इसे माटी गाँयता या भूम गाँयता कहा जाता है। इसका मुख्य कार्य ग्राम के धार्मिक कार्यों का सम्पादन करना होता हैं, जैसे- ग्राम के देवी-देवता की अराधना तथा सेवा-अर्जी करना। गाँव के धार्मिक कार्यों के सम्पादन में इसके महत्व के कारण इसे ग्राम की बैठकों में भी मुख्य स्थान प्राप्त होता है। प्राचीनकाल में गाँव की सरहद के अंतर्गत किसी नवीन व्यक्ति को बसने से पहले गाँयता से अनुमति लेनी होती थी, इसके द्वारा चिन्हित भूमि पर ही वह व्यक्ति अपना निवास बना सकता था। यह परंपरा आज भी ग्रामीण इलाकों में पायी जाती है।¹⁵

ग्रिग्सन¹⁶ के अनुसार, गाँव का प्रमुख धार्मिक व्यक्ति भूम—गाँयता या पेरमा होता है। इसे गाँव का माटी पुजारी भी कहा जाता है। यह गाँव में सभी धार्मिक कार्यों, त्यौहारों व पर्वों में बलि पूजा करने में मुख्य भूमिका अदा करता है।

यद्यपि वर्तमान समय में अब जमीनों की खरीदी–बिक्री होनी लगी हैं, जिसके कारण इनका महत्व कम हो गया हैं, परन्तु बस्तर की जनजातियों के मध्य इनकी महत्ता आज भी कम नहीं हुई हैं। गाँव में जब किसी व्यक्ति की मृत्यु हो जाती है, तब गाँयता के द्वारा ही चिन्हित भूमि पर मृत व्यक्ति को दफनाया जाता है। इस प्रकार रियासतकालीन बस्तर में यह ग्रामीण धार्मिक व्यवस्था का यह एक महत्वपूर्ण पद था। जिसका मुख्य कार्य ग्राम के देवी–देवता की अराधना करना था, परन्तु इसके साथ–साथ यह ग्राम के बैठकों में भी मुख्य भूमिका निभाते थे। चूंकि बस्तर में जनजातियाँ आदिकाल से अपने देवी–देवता की अराधना करते आ रहे हैं, जिन पर उनकी अटूट आस्था हैं। इसी कारण उनके देवी–देवता की पूजा करने वाले गाँयता अर्थात् पुजारी के प्रति भी उनकी अटूट आस्था है। इसलिए गाँयता द्वारा बताये गये मार्ग को वे ईष्वर का आदेष समझकर पालन करते थे।

कोटवार :- रियासतकालीन बस्तर में यह एक महत्वपूर्ण पद था। यह गाँव में शांति व्यवस्था स्थापित करना तथा राजा या रियासत द्वारा लागू किसी कानून को गाँवों में पालन करवाने में इनकी महत्वपूर्ण भूमिका थी। अपराधी को पकड़कर उसे राजा या रियासत के न्यायालय में पेष करना कोटवार का मुख्य कार्य था। इनके माध्यम से शांति एवं न्याय व्यवस्था बनाये रखने में सहायता प्राप्त होती थी। ग्रामीण व्यवस्था से संबंधित किसी भी तीज–त्यौहार, मेले, बाजार आदि की सूचना अन्य गाँवों को देने के लिए मुख्य भूमिका में कोटवार ही होता है। यद्यपि वर्तमान व्यवस्था में इनका महत्व कम हो गया है, परन्तु फिर भी कोटवार, गाँव की शांति व्यवस्था बनाये रखने में अपनी महत्वपूर्ण भूमिका अदा कर रहे हैं।

प्रत्येक मारिया गाँव में धर्मनिरपेक्ष और धार्मिक अधिकारियों का एक पैनल होता है। जिसमें एक मुखिया, जिसे पेडा कहा जाता है तथा उसके सहायक कंदकी और कोटवार होता है। कोटवार का मुख्य कार्य पंचायत के फैसलों या निर्णयों की सूचना पुलिस को देना। कोटवार द्वारा अपने अधिकार क्षेत्रान्तर्गत सभी जन्म और मृत्यु की सूचना भी पुलिस को दी जाती थी।¹⁷

अटपहरिया :-- इस पद पर गाँव के किसी ऐसे व्यक्ति की नियुक्ति की जाती थी, जो द्विभाषिया तथा अतिथि सेवा में तत्पर हो। यह गाँव में किसी अतिथि का व्यवस्थापक होता था अर्थात् इसके द्वारा गाँव में किसी बाहरी व्यक्ति के आने पर उसको मार्गदर्षित करने का कार्य किया जाता था। साथ ही यह अतिथि के ठहरने व उसके भोजन आदि के व्यवस्था की जिम्मेदारी भी निभाता था। आटपहरिया, कहने से ही स्पष्ट है कि यह व्यक्ति दिन के आठों पहर अर्थात् 24 घंटे सेवा के लिए नियुक्त था।

उपसंहार :–

यद्यपि वर्तमान लोकतांत्रिक प्रणाली में उनका महत्व कम हो गया है, परन्तु फिर भी बस्तर के आदिवासियों में प्राचीन परम्पराओं और राजनीतिक संस्थाओं के प्रति आदरभाव आज भी देखने को मिलता है। इसका स्पष्ट उदाहरण बस्तर में प्रतिवर्ष लगभग 75 दिनों तक आयोजित होने वाले बस्तर दषहरा में हमें देखने को मिलता है। इस आयोजन में बस्तर के जनजातीय एवं उनके द्वारा प्राचीनकाल से स्थापित राजनीतिक संस्थाओं जैसे– मांझी, चालकी, पटेल, गायता, कोटवार आदि की महत्वपूर्ण भूमिका होती है। उनके बिना यह आयोजन संभव नहीं है, इसी कारण वर्तमान लोकतांत्रिक सरकारों ने भी उनके महत्व को स्वीकार करते हुए उन्हें विशेष संरक्षण एवं सुविधायें प्रदान की है।श

Sambodhi (UGC Care Journal)

ISSN: 2249-6661 Vol-44 No.-01(XVII) : 2021

वर्तमान में बस्तर का विकास अनेक परियोजनाओं के माध्यम से किया जा रहा है। शासन की सक्रिय भूमिका भी इस बात को दर्षाती है कि वह बस्तर को विकसित देखना चाहती है, परन्तु स्थानीय स्तर पर योजनाओं और परियोजनाओं के क्रियान्वयन में परेषानियों का सामना करना पड़ रहा है। इन परेषानियों को वहाँ के परम्परागत पदाधिकारियों व ग्रामीणों की सहभागिता के माध्यम से ही हल किया जा सकता है क्योंकि स्थानीय समस्याओं और उसके निराकरण में उनकी भूमिका होने से स्थानीय स्तर पर ही बहुत सारी समस्याओं का हल निकाला जा सकता है। साथ ही ग्रामीणों की पूर्ण सहभागिता भी प्राप्त होने से उनकी दषा व दिषा को विकास की मुख्यधारा से जोड़ा जा सकता है। इसी उपादेयता को दृष्टिगत रखते हुए बस्तर को विकसित करने शासन द्वारा नित नये योजनाओं का शुभारम्भ किया जा रहा है।

चूंकि बस्तर के जनजातियों की ये प्राचीन संस्थाएँ धर्म एवं आस्था से जुड़ी हुई प्राचीन संस्थाएँ है इसलिए जनजातियों में, जो कि आदिम धर्म एवं आस्थाओं में विष्वास करते हैं, उनके विकास के लिए उनके द्वारा स्थापित संस्थाओं के माध्यम से ही जनहित एवं विकास के कार्य किए जाने चाहिए ताकि आधुनिक संदर्भ में आदिम संस्थाओं को मान्यता प्राप्त हो और बस्तर जैसे पिछड़े क्षेत्र का विकास भी हो सके। इन आदिम एवं जनजातीय संस्थाओं को मान्यता देकर ही बस्तर संभाग का एक जिला—कोण्डागाँव, छत्तीसगढ़ सहित पूरे भारत देष में अपना नाम रौषन कर रहा है। यहाँ के कलेक्टर आदरणीय श्री नीलकंठ टेकामजी ने इन आदिम एवं जनजातिय संस्थाओं और उन्हें संचालित करने वाले पदधारित जनजातियों को मान्यता और सम्मान दिलाकर उन्हें जनसमस्या निवारण षिविर व शासन के अन्य विकासात्मक गतिविधियों में सहयोगी बनाया। जिसके कारण भारत सरकार के नीति आयोग द्वारा आकांक्षी जिलों की मई 2019 की विकास रैंकिंग में छत्तीसगढ़ का कोण्डागाँव जिला शीर्ष पर रहा।

संदर्भ सूची :--

1 खुटे, डॉ. डिष्वरनाथ, बस्तर की राजनीतिक एवं प्रषासनिक व्यवस्था (1854 से 1947 ई. तक), षिवालिक प्रकाषन, दिल्ली, 2019, पृ. 136 ² उपरोक्त, पृ. 163 ³ बेहार, रामक्मार एवं निर्मला, बस्तर आरण्यक, धरमपुरा जगदलपुर, 1985, पृ. 75 ⁴ ग्रिग्सन, डब्ल्यू. वी., मारिया मर्डर एण्ड सुसाईट, ऑक्सफोर्ड यूनीवर्सिटी प्रेस, 1943, पृ. 33 5 पाण्डेय, षिव कुमार, बस्तर की मुरिया जनजाति, सरस्वती बुक्स, भिलाई, 2019, पृ. 17 ⁶ बेहार, रामकुमार, बस्तर एक अध्ययन, मध्यप्रदेष हिन्दी ग्रन्थ अकादमी, भोपाल, 1995, पु. 59 ⁷ चार्ल्स ग्राण्ट, द गजेटियर ऑफ द सेन्ट्रल प्रोविंसेस ऑफ इण्डिया, नागपुर, 1870, प्रस्तावना ⁸ वही, पृ. 36 ⁹ ग्रिग्सन, डब्ल्यू. वी., मारिया मर्डर एण्ड सुसाईट, पूर्वोक्त, पृ. 33 ¹⁰ ठाकुर, पं. केंदारनाथ, बस्तर-भूषण, नवकार प्रकाषन, कांकेर, 2005, पृ. 45 ¹¹ वर्ल्यानी एवं साहसी, पूर्वोक्त, पृ. 161 ¹² शुक्ला, डॉ. सुरेषचन्द्र एवं डॉ. अर्चना, छत्तीसगढ़ का समग्र इतिहास, मातुश्री पब्लिकेषन, रायपुर, 2018 पृ. 43 13 खुटे, डॉ. डिप्वर नाथ, बस्तर की राजनीतिक एवं प्रषासनिक व्यवस्था (1854 से 1947 ई. तक), पूर्वोक्त, पृ. 174 ¹⁴ पॉण्डेय, षिव कुमार, बस्तर की मुरिया जनजाति, सरस्वती बुक्स, भिलाई, 2019, पृ. 18 ¹⁵ उपरोक्त, पृ. 18 ¹⁶ ग्रिग्सन, डब्ल्यू. व्ही., मारिया मर्डर एण्ड सुसाईट, पूर्वोक्त, पृ. 34 17 वही, पृ. 33

Sambodhi

CERTIFICATE OF PUBLICATION

Sambodhi Journal is delighted to award you for publishing your Research Paper Entitled

रियासतकालीन बस्तर में मुरिया जनजाति की प्रषासनिक व्यवस्था ADMINISTRATIVE SYSTEM OF MURIA TRIBE IN PRINCELY BASTAR

Authored By

शोधार्थी **पुरोहित कुमार सोरी** सहायक प्राध्यापक इतिहास शास. गुण्डाधूर स्नातको. महाविद्यालय, कोण्डागाँव (छ.ग.)

Published in Vol-44-No.01 (XVII) : 2021 of Sambodhi Indological Research Journal of L.D.I.I with ISSN : 2249-6661 UGC Care Approved, Peer Reviewed and Referred Journal Impact Factor 5.80

We Heartily Congratulate you for the Successful Publication

Mahaley Patel

Editor, Sambodhi Journal

ISSN No: 2249-6661 (Print)